
Model-Driven Software Engineering in the Resource
Description Framework: a way to version control

Hans Georg Schaathun∗ Adrian Rutle†

Abstract

Version control is a long-standing open problem for model-driven
software engineering (MDSE). When the users work with diagrammatic
models, conventional text-based version control is of little use, as the
textual representation may change even when no change is made to
the semantic model. A similar problem exists in semantic technologies,
but recent research has given us a couple of very promising solutions
for Resource Description Framework (RDF) graphs. In this paper we
demonstrate how the Diagram Predicate Framework (DPF), a modelling
framework in MDSE, can be represented unambiguously as RDF graphs.
The RDF representation is then used as a foundation to analyse con�ict
resolution for version control of DPF models.

1 Introduction
Model-driven engineering (MDSE) [5] represents a paradigm shift in the software
development � from being code-centric to become model-centric � in order to tackle
the increasing complexity of software. MDSE aims to organise its main building
blocks, i.e. models, metamodel, and model transformations, in a well-structured
engineering methodology. There have been several successful industrial applications
of MDSE with gains in terms of productivity, quality and performance. See [24]
for a review of MDSE's current state and practise. As models become �rst-class
entities in the development process, model management tools and technologies
become crucial. A critical element of every software engineering tool-chain is version
control, to support parallel and concurrent development branches which can later
be compared and/or merged. Text-based version control systems are mature, and
have proved e�ective for conventional programming. For MDSE it remains a hard
problem [6, 17, 4].

The fundamental di�erence between MDSE and conventional programming is
that the user in MDSE works with graphs rather than line-based text [7, 1]. A
simple change in the graph structure, will often result in many changed lines spread
throughout the serialised �le. Hence using line-based version control for models
corrupts the information in the graph-based structure and associated syntactic and
semantic information might get lost. Version control systems should therefore take
the graph structure into account when graph-based artifacts are handled.

∗NTNU, Noregs Teknisk-Naturvitskaplege Universitet, 〈georg@schaathun.net〉
†Høgskulen på Vestlandet, 〈Adrian.Rutle@hvl.no〉

This paper was presented at the NIK-2018 conference; see http://www.nik.no/.



A second challenge in MDSE is that the models have a user-friendly visual syntax
in addition to the textual, semantic syntax. Models are usually created using the
visual syntax, and therefore a �ne-grained version control is necessary to take care
of both the abstract and the concrete syntax. It is important to distinguish between
changes to the graph-structure and changes to the visual representation, since the
latter a�ects only the presentation of the model and not its meaning.

Furthermore, merging di�erent layout is still a challenging task since no concise
de�nition is yet done telling which layout changes should be reported as con�icts and
how these con�icts should be presented to the user. Consequently, the modi�cations
and con�icts are usually presented in the abstract syntax without the visual
information which is valuable for the human user. The visualization of di�erences
and con�icts in the concrete syntax of the modeling language is still an open issue
[7]. On the bright side, some proposals to an infrastructure supporting optimistic
model versioning has started to emerge (see [16] for a survey).

A popular and generic language to represent graph structures is the Resource
Description Framework (RDF). Signi�cant progress has been made on version
control for RDF graphs in recent years. Di�cult problems, such as hashing
and handling of blank nodes, have been solved with promising prototype
implementations, even though no industry standard have emerged yet.

In this paper we consider the Diagram Predicate Framework (DPF) [20]
which is one framework for MDSE. We chose DPF due to its expressive power
which facilitates the formalisation of MOF-based modelling languages [21] like
the industrial standards EMF (Eclipse Modeling Framework [22]) and UML class
diagrams. Our objective is to establish a simple framework for version control,
merging, and con�ict resolution for DPF models, based on an RDF representation.
We emphasise the simplicity of RDF, which provides a simple and �exible data
model, whose bene�ts extend beyond version control. For instance, the reasoners
made for ontologies may also be relevant for MDSE.

We make a quick review of the relevant state of the art in Section 2 and an
introduction to DPF in Section 3. The RDF representation is presented as an
example in Section 4 and formalised in Section 5. In Section 6 we discuss version
control, and in Section 7, we conclude.

2 Literature review
In this section, we will �rst outline the current state of version control in MDSE, then
present some results on applying version control in RDF and ontologies. Finally,
we present some previous works which have attempted to make the link between
MDSE and ontologies with the purpose of solving the version control problem.

Current approaches to merging two software models can be categorized along
two orthogonal dimensions: the representation of the artifacts may be either text-
based or graph-based, and the representation and merging of patches (deltas) can
be either state-based or operation-based [7].

In [19] an operation- and graph-based approach to version control in MDSE is
presented. While this approach also uses the DPF and formalises version control
concepts in terms of categorical constructions, in this paper we design a practical
implementation for supporting version control by serialising DPF speci�cations into
RDF. EMF Store [16] provides a dedicated framework for version control of EMF
models. It is an operation- and graph-based approach which supports e�cient and



precise detection of composite changes. AMOR [8] is a state-, operation- and graph-
based approach which implements a con�ict detection component for EMF models
which reports con�icts resulting from both atomic and composite changes.

The R43ples [12] system is a server-side system to handle revision history of RDF
graphs. It includes an extension of SPARQL to query against speci�c reversions or
di�erence sets. Selected versions are stored as full graphs, while most are represented
by delta sets, and need to be recomputed using some full graph. Full graphs and
delta sets are stored as named graphs, which means that named graphs cannot be
used for other purposes. Frommhold et al. [11] make a comprehensive suggestion
for RDF versioning, supporting both named graphs, blank nodes, and hashing of
RDF graphs.

Neither [12] nor [11] considered merging and con�ict resolution. Their work
focused on e�cient persistence and querying against the version history. In [9],
revision history is modelled as a sequence of patches. A con�ict arises when two
parallel patches give di�erent results depending on the order in which they are
applied. Building on their work, Hensel et al. [13] proposed a methodology for
con�ict detection and resolution in a three-way merge for semantic revision control
systems. They also implemented a prototype based on R43ples [12], extending
SPARQL further to allow merging queries.

The Quit (quad in git) store [2] is based on a canonical serialisation of an RDF
graph, using the n-quad format with quads sorted in lexicographic ordering. These
canonical text �les can then be managed by git.

Blank nodes present certain challenges in the processing of RDF graphs, and
their interpretation is not consistent in published datasets [15]. Tumarello et al. [23]
de�ne Minimum Self-contained Graphs (MSG). Any graph may be partitioned into
MSGs so that every blank node is present in only one MSG and every statement
occurs in exactly one MSG. As long as the MSGs are relatively small, isomorphism
checks are tractable in practice.

Needless to say, MDSE and ontologies are related in many aspects [18, 3]; for
example both involve domain modelling, (meta)modelling hierarchies, etc. But in
this section we only present the works/tools which attempt to provide solution for
serialising EMF models in RDF. We evaluate these approaches as potential tools
for transforming our DPF speci�cations (which are internally represented as EMF
models) into RDF.

Hillairet et al. [14] discussed a bridging between EMF and RDF. They de�ne a
mapping between EMF models (instances of Ecore) and OWL/RDFS ontologies.
Moreover, they de�ne a serialization mechanism for instances of these EMF
models into RDF Resources. The mapping de�nition is implemented as an ATL
transformation which can be applied to instances of the EMF model in order to
generate the RDF Resources. This transformation is de�ned to be bidrectional,
i.e., it can be used for both serialisation and deserialisation of the models. The
authors also utilise their approach with query languages like HQL and SPARQL.
EMF Triple1 is a tool for serialising EMF models in RDF. It supports various RDF
stores, such as Jena TDB and sparql endpoints. It also supports various graph
databases such as Neo4J, through the sail implementations provided by tinkerpop
blueprints.

1https://marketplace.eclipse.org/content/emf-triple



Figure 1: A metamodelling hierachy in DPF

3 Diagram Predicate Framework
DPF [20] provides a formal diagrammatic approach to (meta)modelling and
model transformation based on category theory. The main concepts in DPF
are speci�cations and signatures. A speci�cation consists of a graph (which
represents a model or metamodel) and constraints (which are used to specify domain
peculiarities). Signatures de�ne the diagrammatic predicates which are used to
de�ne the constraints. Formally, we de�ne these concepts as follows.

De�nition 1 (Signature). A (diagrammatic predicate) signature Σ = (PΣ, αΣ)
consists of a collection of predicate symbols PΣ with a map αΣ that assigns a graph
to each predicate symbol p ∈ PΣ. αΣ(p) is called the arity of the predicate symbol p.

De�nition 2 (Atomic Constraint). Given a signature Σ = (PΣ, αΣ), an atomic
constraint (p, δ) added to a graph S is given by a predicate symbol p and a graph
homomorphism δ : αΣ(p)→ S.

De�nition 3 (Speci�cation). Given a signature Σ = (PΣ, αΣ), a (diagrammatic)
speci�cation S = (S,CS : Σ) is given by a graph S and a set CS of atomic
constraints (p, δ) on S with p ∈ PΣ.

An example speci�cation is shown in Figure 1(c). In addition to the graph, with
two nodes and two arrows, the speci�cation includes a set of constraints. In this case
there is one constraint, saying that the two arrows are inverses of each other. The
signature (Figure 1(d)) serves as a metamodel for constraints, de�ning the interface
used to apply a constraint to an actual model.

In most cases, it is necessary to de�ne the types of model elements. These types
and their relations are de�ned in a metamodel, which in itself is a speci�cation. In
the example, the metamodel is shown in Figure 1(b). The type mapping is shown as
dotted arrows, and it de�nes a graph homomorphism from the typed graph to the
type graph. This idea of typing leads to an organisation of models in metamodelling
stacks, where a model at a level acts as the metamodel for the model below it.
The top-level model (Figure 1(a)) is its own metamodel, and we can see the typing
homomorphism forming self loops. In DPF, each of these models is represented
as a typed speci�cation, which is an ordinary speci�cation together with a graph
homomorphism ι. Formally we de�ne it as follows.



Listing 1 Proposed Turtle syntax for the top level artefact (Fig. 1(a)).

@prefix mm0: <http://example.org/mm0.ttl#> .

<http://example.org/mm0.ttl> rdf:type dpf:Specification ;

dc:creator "Adrian Rutle" ;

rdfs:label "Top-level metamodel" .

mm0:node rdf:type mm0:node .

mm0:edge rdf:type mm0:edge .

mm0:node mm0:edge mm0:node .

Listing 2 Sample signature �le as RDF (Fig. 1(d)).

<http://example.org/samplesig.ttl> a dpf:Signature .

dpf:inverse a dpf:PredicateSymbol ;

dpf:hasNode :a, :b ;

dpf:hasEdge :f, :g .

:a :f :b .

:b :g :a .

dpf:composition a dpf:PredicateSymbol ;

dpf:hasNode :c, :d, :e ;

dpf:hasEdge :h, :i, :j .

:c :h :d .

:d :i :e .

:c :j :e .

De�nition 4 (Typed Speci�cation). Given a speci�cation T = (T,CT : ΣT ), a
typed speci�cation SBT = (S,CS : ΣS) over T is a speci�cation along with a graph
homomorphism ιS : S → T .

4 DPF as RDF by example
For the sake of presentation, we take the model stack in Figure 1 as an example,
and illustrate, step by step, how we could make an RDF representation thereof. In
the next section, we will formalise the approach, and argue that it is complete.

The top-level metamodel in DPF (Figure 1(a)), can be represented in RDF
(Turtle syntax) as follows:

:node :arrow :node .

:node rdf:type :node .

:arrow rdf:type :arrow .

The �rst line de�nes the graph with a single arrow, and the other two give the
type information. The artifact should have a unique ID, and may have associated
metadata. Adding this, we get Listing 1. The triple which speci�es the type
dpf:Specification implicitly refers to the artifact as represented by the �le as
a whole, and dpf:mm0 becomes the URI for this artifact. Note that this pattern is
similar to how modular ontologies are de�ned in OWL.

A signature is a set of elements, where each signature element corresponds to a
predicate label and serves as a template for a constraint. The signature elements can



Listing 3 A sample DPF speci�cation coded in RDF (Fig. 1(c)).

@prefix : <http://example.org/samplemodel.ttl#> .

@prefix mm1: <http://example.org/mm1.ttl#> .

@prefix sig: <http://example.org/samplesig.ttl#> .

<http://example.org/samplemodel.ttl>

rdf:type dpf:Specification ;

dpf:import <http://example.org/mm1.ttl> ;

dpf:import <http://example.org/samplesig.ttl> ;

rdfs:label "Sample model" .

:employer rdf:type mm1:class .

:employee rdf:type mm1:class .

:employedBy rdf:type mm1:association .

:employer :employedBy :employee .

:employerOf rdf:type mm1:association .

:employee :employerOf :employer .

:delta1 dpf:mapForPredicate dpf:inverse .

sig:a :delta1 :employer .

sig:b :delta1 :employee .

sig:f :delta1 :employedBy .

sig:g :delta1 :employerOf .

be handled individually. Many common signature elements are already supported by
OWL, for instance owl:inverseOf. DPF also requires signature elements of higher
arity, for instance composition which says that one edge f may be the composition
f = g ◦ h of two other edges.

To handle arbitrary arity, we propose an RDF representation which closely
follows De�nition 1. An example is shown in Listing 2. The signature has a
URI as for the model graphs before. This signature de�nes two predicate symbols
dpf:inverse and dpf:composition. Each has a set of nodes and edges which make
up the arity graph. For instance α(dpf:inverse) has two nodes and two edges. The
following two lines in Listing 2 give the graph, where both edges connect the two
nodes, but in opposite directions.

Listing 3 shows a second artifact, representing the metamodel one level below.
Note the new property dpf:import, which is used to import both the metamodel
and the signature. The interpretation of dpf:import is similar to, possibly identical
to, owl:import, but we have introduced a speci�c DPF term to be able to restrict
the domain and range to DPF artifacts.

The last �ve lines give the constraint (dpf : inverse, δ1). We assert that :delta1
is a mapping δ1 for the predicate dpf:inverse. Then we assert the image under δ1

for each element of the graph associated with dpf:inverse.



5 Formalising the RDF representation
We have introduced a vocabulary of artifacts, de�ning the artifact types
dpf:Signature and dpf:Specification, and dpf:import to de�ne dependencies
between artifacts. These two types of artifacts are su�cient for practical use.
Signatures provide the language for constraints, and (typed) speci�cations are used
for models including metamodels. In RDF, we represent each artifact as a named
graph, with a URI. Thus the artifacts can be handled separately, and dependencies
and other metadata can be de�ned.

De�nition of RDF

De�nition 5. An RDF document is a set of triples (s, p, o) ∈ (U ∪ B)× U × (U ∪
B∪D), where U is a set of URIs (universally unique identi�ers), B is a set of blind
nodes (which can be viewed as local identi�ers), and D is a set of literals.

In the example, we used the set U for all model elements. The literals L were
used for some of the metadata (strings). Blind nodes are not needed, and we shall
disregard the set B.

An RDF document is often called an RDF graph, where we view the triple
(s, p, o) as an arrow (edge) from vertex s to vertex o labelled by p. RDF has a few
unorthodox properties when viewed as graph. Firstly, the same element may be
both a vertex and an edge label. Secondly, some nodes, namely the set of literals
D, can only appear as a destination node of an arrow. Finally, the set of vertices
V is not explicitly de�ned, and a vertex can only exist if it is connected to some
arrow. The triple (s, p, o) can also be viewed as a logic statement, with a subject s,
predicate p, and an object o. We will rely on the graph interpretation in this paper.

Many di�erent ontology languages use RDF as their representation language.
RDF itself does not have any semantics, making it versatile and reusable. We use a
few terms from the RDF, RDFS, and DC (Dublin Core) vocabularies, and use their
canonical pre�xes rdf:, rdfs:, and dc: without further comment.

Identi�ers

The use of identi�ers in DPF has not been standardised, and di�erent
implementations have handled it di�erently. This prevents serialised formats to
be shared between implementations, so it is a problem which has to be resolved at
some point. In practice, we will need to refer unambiguosly to every resource in
a DPF model, including the artifacts, nodes, edges, and predicate symbols. In an
RDF representation, the universal ID should be a URI. If required, a mapping can
be designed between URIs and other global naming schemes, such as the package
naming scheme used in Eclipse and in Java. This may be useful for the artifacts.
For other resources, we suggest to use the artifact URI as a pre�x and append a
local ID, as illustrated in Listings 1 and 3.

The local ID can be machine- or user-generated, but the user-generated ID is
likely to change. A machine-generated ID makes it easier to make it unique and
immutable, and tools may hide this ID from the user. A user-de�ned label must be
supported in addition to the ID, and this can be stored as a separete triple, with
the rdfs:label annotation property.



Signatures

The vocabulary for signatures requires three terms: dpf:PredicateSymbol,
dpf:hasNode, and dpf:hasEdge. This is su�cient to de�ne a signature Σ =
(PΣ, αΣ) according to De�nition 1. The set PΣ consists of all the URIs asserted
with type dpf:PredicateSymbol. The associated graph αΣ(p) for a given predicate
symbol p, consists of the nodes and edges associated with p via the dpf:hasNode

and dpf:hasEdge properties. The graph itself, is simply represented as an RDF
graph, giving a (source,edge,destination) triple for each edge. Any signature can be
represented in RDF in this way.

Speci�cations

A typed speci�cation consists of three parts: the model graph, the set of constraints,
and the typing. Being just a directed multigraph, the model graph can be
represented as RDF in the natural way. We use the singleton pattern, so that a
new property p is de�ned for every edge (s, p, o) and used only once. Thus p can be
used to identify the edge uniquely.

The typing is a homomorphism from the underlying graph of a speci�cation to the
type graph. The homomorphism can trivially be represented as a bipartite graph,
which we de�ne in RDF using the rdf:type property to connect corresponding
nodes and edges.

Each constraint (p, δ) is a predicate label p and a homomorphism δ from
the graph associated with p to a subgraph of the underlying graph. We have
introduced the term dpf:mapForPredicate to declare the constraint (p, δ). Again
the homomorphism is modelled as a bipartite graph.

Visual syntax

DPF has a visual syntax, where geometric layout must be serialised in addition
to the semantic content. The dual use of visual and textual syntax is also known
from other languages, such as Modelica [10], where the visualisation is speci�ed by
optional annotations in the textual program. In the RDF representation, we suggest
to keep the visualisation in a separate artifact, as is done in the current Eclipse
plugin for DPF. This separation reduces coupling between the semantic model and
its presentation. We will leave the vocabulary for visualisation for future work, and
just note that the visualisation artifact can make declare geometric coordinates for
the di�erent components.

6 Classi�cation and resolution of con�icts
Able to represent DPF as RDF graphs, we can use any of the existing serialisation
formats and tools for RDF to process DPF models, e.g. R43ples or Quit as mentioned
in the literature review. These tools do not handle con�ict resolution. In this section
with investigate what constitutes a con�ict and how it can be resolved.

Patch representation in RDF

An RDF document is a set V0 of triples. If we create a new document V1 as a revision
of V0, we can de�ne the patch as the pair (V1\V0, V0\V1) where \ denotes the set
di�erence. The set V1\V0 is the triples to be added and V0\V1 the set of triples to
be removed by the patch.



We consider state-based, three-way merging. To merge two version Va and Vb,
we need to identify the last common ancestor V . Since all versions are ultimately
derived from the same (empty) initial version, such a last common version always
exists. We can calculate the patches for each version Pa = (Va\V, V \Va) and Pb =
(Vb\V, V \Vb), and de�ne the merged patch Pc = ((Va\V )∪(Vb\V ), (V \Va)∪(V \Vb)).
The merged version Vc is de�ned by applying the patch Pc to V .

De�nition 6. Assuming that Va and Vb are two versions representing valid models,
there is a con�ict between Va and Vb if the merged version Vc is not a valid model.

Any set of triples is a valid RDF document. Hence, con�icts occur only when
semantic constraints are added on top of RDF. This de�nition of con�icts is di�erent
from text-based version control, where con�icts occur when changes are made to
adjacent lines. It is also di�erent from con�icts considered for RDF in [9, 13], where
every intermediate change in the history from V to Va (resp. Vb) is considered.

Syntactic con�icts in DPF

There is no agreement in the literature on the de�nition of syntactic con�icts [1].
Syntax is de�ned by the language used, and in metamodelling we use a stack of
languages (see Fig. 1), each with its own (abstract) syntax. As syntactic con�icts
we shall only count such con�icts as can be identi�ed with the languages that we
have introduced. Merging two typed speci�cations to get a merged speci�cation
S = (S,CS : Σ), the following syntactic con�icts are possible:

1. Violation of the mathematical language of graphs, i.e. S is not a graph.

2. Violation of the syntax for de�nition of constraints, i.e. there is a constraint
(p, δ) ∈ CS so that δ is not a graph homomorphism.

3. Type violation, i.e. ι is not a graph homomorphism.

It is straight forward to identify these con�icts by checking the consistency of the
logic system represented by the RDF graph.

The prototypical example of (1) is when one version removes a node, while the
other adds new references to the same node (edges to or from the node). Type (2)
arises if one version removes a model element, while the other adds a constraint
on that particular element. Type violations (3) can occur if one branch changes
the typing and the other changes the nodes and edges involved. Checking this
automatically is normally possible.

Removal of a node is not well-de�ned in RDF, where a node exists if and only if it
is mentioned in some triple. In DPF, this situation is still detectible because it results
in a node or arrow with no type statement. If we want to support untyped nodes
and edges in DPF, this can be resolved with a dummy type (e.g. dpf:unknownType),
to allow a type statement with unknown type.

Syntactic con�icts can easily be detected by checking the RDF subgraphs against
the de�nitions of graphs and graph homomorphisms. In most cases, they will require
manual resolution, so tools should focus on identifying and locating the con�icts.

Merging two versions of a signature results in a con�ict if the merged version
does not satisfy De�nition 1. This is similar to (1) above in the sense of creating an
arity which is not a valid graph. Since the signatures do not have a metamodel, the
other syntactic con�icts do not apply.



Textual con�icts

Textual con�icts are only visible in the textual representation. The two versions, in
presence of textual con�icts, represent the same or equivalent graphs. In RDF this
can take three forms, as a change to a URI, to a blank node, or to a literal.

A typical example is renaming of a model element, i.e. the user-de�ned label
(rdfs:label) changes. A con�ict occurs when two users both change the label
on the same model element. If a model element is allowed to have multiple labels,
there is no con�ict. A con�ict only arises if the property p only allows one statement
(s, p, o) for the same subject s. Such cardinality constraints may be de�ned for each
p and checked semantically after merging. Changes to the metadata (e.g. author
name) may also cause textual con�icts. If a textual con�ict is detected, it must be
presented to the user for manual resolution.

Blank nodes are not used, but a URI con�ict occurs if both users add the same
new subgraph while the tools create di�erent URIs. Identical changes may be
detected using isomorphism checks on the patches, thus identifying it as a textual
con�ict. It is questionable how useful this is in practice. Two users are very
unlikely to create identical changes, especially complex changes. More commonly,
they choose slightly di�erent variations, even if they have the same intention, and
the two versions need to be compared and evaluated manually.

Semantic and other con�icts

Semantic con�icts is a diverse range [1], and we can only brie�y mention a few
examples. A con�ict occurs if the merged model has no possible instantiation.
Although computationally expensive, this can be checked automatically. Other
con�icts arise when two users add di�erent model components with the same
intention. Such con�icts cannot necessarily by automatically detected, and
resolution will often require domain knowledge.

Conformance violation occur when S violates constraints de�ned in the
metamodel. This is a syntactic con�ict, but it depends on the semantics of the
predicates being de�ned, and di�erent languages are needed to identify the con�icts.

A last class of con�icts can occur if the metamodel or signature is changed,
i.e. when we merge two versions importing di�erent documents to de�ne the same
resources. In such cases, one of the models should probably be updated to conform
with the same metamodel and signature as the other, before the merge is attempted.

Visualising con�icts

Although many con�icts can be detected automatically, resolution often requires
manual intervention. This can be facilitated if the software can present the con�ict
in an intelligible way. A main criticism towards text-based version control in the
MDSE community is that a simple changes, such as the removal of a node, may
a�ect many lines of code scattered around the document. Thus the con�ict is hard to
comprehend. This problem is not unique to modelling, and it occurs with refactoring
in conventional programming, for instance when a function is renamed.

Text-based tools will usually �ag a con�ict if changes occur within adjacent
lines. The analogue in RDF would be changes to adjacent nodes and edges. To
visualise con�icts, we should therefore focus on changing edges which are connected
in a graph-theoretical sense. The subgraph which is a�ected by the merge, can be



identi�ed by taking every edge in the merged patch:

∆ = (Va\V ) ∪ (V \Va) ∪ (Vb\V ) ∪ (V \Vb).

This is a set of edges and thus a graph, not necessarily connected. By partitioning
this graph into connected components, we identify changes which are likely to relate
to the same con�ict, and which should therefore be presented together.

7 Conclusion
We have provided a proof of concept to demonstrate that DPF can be serialised
in RDF. This provides a simple and �exible representation with human readable
serialisations. The extensive literature and wide applications on RDF means that
it is well understood. Since most MDSE frameworks are based on graphs and DPF
can represent graph-based modeling languages, it is reasonable to believe that the
work can be extended to beyond the single framework of DPF.

Based on the RDF representation we discuss how merge con�icts in a version
control system can be categorised and resolved. Considering state-based, three-way
merging, con�icts only occur as violations of DPF semantics. No con�icts exist
in the RDF representation itself. Hence, existing RDF tools only can be used to
manage revision history. In contrast, con�ict resolution must be implement on a
higher level. We have categorised potential con�icts and outlined approaches to
resolution.

We are con�dent that this provides a working solution, and the most immediate
future work is to make a prototype implementation, both of the RDF serialisation
of DPF, and of the con�ict resolution for DPF version control based on RDF. Some
open questions remain to optimise the solution, including using model constraints
to automate as much as possible of the con�ict resolution, and to provide a suitable
framework for release and dependency management.

The RDF representation gives access to a rich toolbox, already developed in
the RDF and semantic web communities, and the bene�ts may extend beyond
version control. For instance, automatic reasoning developed for ontologies may
�nd applications in MDSE.

References
[1] K Altmanninger and Alfonso Pierantonio. A categorization for conflicts in model versioning.

e & i Elektrotechnik und Informationstechnik, 128(11-12):421–426, 2011.

[2] Natanael Arndt, Norman Radtke, and Michael Martin. Distributed collaboration on rdf
datasets using git: Towards the quit store. In Proceedings of the 12th International Conference
on Semantic Systems, pages 25–32. ACM, 2016.

[3] Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, meta-models, and the model-
driven paradigm. In Coral Calero, Francisco Ruiz, and Mario Piattini, editors, Ontologies for
Software Engineering and Software Technology, pages 249–273. Springer, 2006.

[4] Stephen Barrett, Patrice Chalin, and Greg Butler. Model merging falls short of software
engineering needs. In Proceedings of the 2nd Workshop on Model-Driven Software Evolution
@MoDELS’08, 01 2008.

[5] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in
Practice, Second Edition. Synthesis Lectures on Software Engineering. Morgan & Claypool
Publishers, 2017.



[6] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland, and Manuel
Wimmer. An introduction to model versioning. In Marco Bernardo, Vittorio Cortellessa, and
Alfonso Pierantonio, editors, Formal Methods for Model-Driven Engineering, volume 7320 of
LNCS, pages 336–398. Springer, 2012.

[7] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer, and Gerti
Kappel. The past, present, and future of model versioning. In Emerging Technologies for the
Evolution and Maintenance of Software Models, pages 410–443. IGI Global, 2012.

[8] Petra Brosch, Martina Seidl, Konrad Wieland, Manuel Wimmer, and Philip Langer. By-
example adaptation of the generic model versioning system AMOR: how to include language-
specific features for improving the check-in process. In Shail Arora and Gary T. Leavens,
editors, OOPSLA, pages 739–740. ACM, 2009.

[9] Steve Cassidy and James Ballantine. Version control for RDF triple stores. ICSOFT
(ISDM/EHST/DC), 7:5–12, 2007.

[10] Peter Fritzson. Principles of object-oriented modeling and simulation with Modelica 2.1. John
Wiley & Sons, 2010.

[11] Marvin Frommhold, Rubén Navarro Piris, Natanael Arndt, Sebastian Tramp, Niklas Petersen,
and Michael Martin. Towards versioning of arbitrary RDF data. In Proceedings of the 12th
International Conference on Semantic Systems, pages 33–40. ACM, 2016.

[12] Markus Graube, Stephan Hensel, and Leon Urbas. R43ples: Revisions for triples. In
Proceedings of the 1st Workshop on Linked Data Quality co-located with 10th International
Conference on Semantic Systems (SEMANTiCS 2014), 2014.

[13] Stephan Hensel, Markus Graube, and Leon Urbas. Methodology for conflict detection and
resolution in semantic revision control systems. 2016.

[14] Guillaume Hillairet, Frédéric Bertrand, Jean Yves Lafaye, et al. Bridging emf applications
and rdf data sources. In Proceedings of the 4th International Workshop on Semantic Web
Enabled Software Engineering, SWESE, 2008.

[15] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. Everything you always
wanted to know about blank nodes. Web Semantics: Science, Services and Agents on the
World Wide Web, 27:42–69, 2014.

[16] Maximilian Koegel and Jonas Helming. Emfstore: a model repository for EMF models. In Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel, editors, Proceedings
of ICSE - Volume 2, pages 307–308. ACM, 2010.

[17] Philip Langer. Version control for models: From research to industry and back again. In Tanja
Mayerhofer, Alfonso Pierantonio, Bernhard Schätz, and Dalila Tamzalit, editors, MODELS,
volume 1706 of CEUR Workshop Proceedings, page 1. CEUR-WS.org, 2016.

[18] Fernando Silva Parreiras, Jeff Z. Pan, and Uwe Aßmann. Second workshop on transforming
and weaving ontologies in model driven engineering (TWOMDE 2009). In Sudipto Ghosh,
editor, MODELS, volume 6002 of LNCS, pages 325–328. Springer, 2009.

[19] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. A formalisation of the
copy-modify-merge approach to version control in MDE. JLAMP, 79(7):636–658, 2010.

[20] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis,
Department of Informatics, University of Bergen, November 2010.

[21] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A diagrammatic
formalisation of mof-based modelling languages. In Manuel Oriol and Bertrand Meyer, editors,
Objects, Components, Models and Patterns, pages 37–56. Springer Berlin Heidelberg, 2009.

[22] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley Professional, 2008.

[23] Giovanni Tummarello, Christian Morbidoni, Paolo Puliti, and Francesco Piazza. Signing
individual fragments of an RDF graph. In Special interest tracks and posters of the 14th
international conference on World Wide Web, pages 1020–1021. ACM, 2005.

[24] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-driven
engineering. IEEE Software, 31(3):79–85, 2014.


