
Analysis of Feature-Completeness in Android
Cross-Platform Frameworks

Andreas Biørn-Hansen1, Tor-Morten Grønli1, and Siri Fagernes1

1Mobile Technology Lab, Department of Technology, Westerdals Oslo
School of Arts, Communication and Technology, Norway

Abstract
In cross-platform mobile development research, we frequently encounter mentions

of limitations and constraints potentially imposed by technical tools and development
frameworks. This is especially prominent in the context of programmatic device- and
platform feature access, including features such as GPS, Internet and device camera
access. Although the majority of the literature does not empirically validate these claims,
they have reached acceptance in both practitioners’ communities and academic research.
By downloading a sample of 300,000 Android applications available on the Google Play
Store and analysing them, we set forth to find which platform- and device features
are the most commonly included in deployed apps. Based on the results, we map the
features to their availability in five major cross-platform development frameworks, thus
provide an overview of feature completeness and potential shortcomings in these popular
frameworks. Our findings indicate that the scrutinised frameworks range from 86.37%
to 95.46% feature-completeness and can thus facilitate the development of mobile apps
relying on features that are commonly found in our assessed sample of Android apps.

1 Introduction
With projected revenue streams approaching 200 billion USD in year 2020 [1], software
applications – or apps – targeting smartphone devices is a tremendous source of potential
income for mobile developers and businesses. However, taking part of the app economy
is a complicated endeavour, involving a myriad of decisions, both technical and business
in nature. An initial decision might be: which mobile operating system(s), henceforth
referred to as platform(s), must be targeted to reach the majority of the app’s target
group? According to a study by Francese et al. [2], developers find that developing for
multiple platforms is challenging for reasons involving inherent differences in platform
features and application programming interfaces (APIs), code maintenance, and testing,
among a variety of reasons. This may not be surprising, as following traditional app
development methods, developing an idea into an app that is executable on both Android
and iOS will require two completely separate codebases. Thus, development efforts tend
to double compared to developing for only one platform [3, 4]. On a similar note, does
the development team’s competency include mobile development-specific knowledge?
This typically includes proficiency in the programming languages Java or Kotlin for

This paper was presented at the NIK-2018 conference; see http://www.nik.no/.



Android, Swift or Objective-C for iOS, and C# for the Windows platform, in addition
to understanding of platform-specific guidelines on user experience and visual design
[5, 2]? In fact, for each platform added to the product specification, an additional set of
programming language(s), design guidelines, third-party libraries, architectural patterns
and more adds to the development complexity. Thirdly, should the app make use of
platform- and device functionality, including such as the GPS module, Internet access
for HTTP calls, file system access for storing and retrieval of files, and have the ability
to intercept incoming SMS? Existing literature frequently refer to this type programmatic
access as access to device and platform features [6], and is a commonplace requirement
in decision trees- and frameworks (e.g. [7, 8, 9]).

Indeed, developing platform-specific apps – terminologically referred to as Native
apps – for smartphones may be severely complex, and reportedly so, both costly and
time consuming [3, 4]. However, practitioners and researchers have since the advent of
the smartphone tried to minimise the required effort of developing apps that can run on
multiple platforms, i.e. have the ability to share large portions of code between otherwise
heterogeneous platforms. This is typically achieved through the use of abstractions layers,
whose purpose is to abstract platform-specific functionality into models and more generic
APIs, that will – depending on the platform onto which an app is deployed – execute the
respective functionality in a fashion that is understood by the underlying platform [4].
Both in research and practice, these abstraction layers are commonly referred to as cross-
platform frameworks [10], and are seen as replacements or supplements of the traditional
Native app development approach. The cross-platform umbrella term embodies a wide
array of technical solutions and overarching development approaches and has in recent
years seen backing from major companies including Facebook, Google and Telerik
advocating the possibilities of cross-platform development through their own portfolio
of solutions including React Native, Flutter and NativeScript respectively. The purpose of
these frameworks is to deliver a mostly homogenous and platform-unified development
experience. By doing so, these frameworks help developers to create mobile apps without
having to write platform-specific code for business logic and user interface from scratch
twice if an app is to be available on both Android and iOS. To exemplify, a cross-platform
framework can enable developers to write business logic in JavaScript, which acts as the
abstraction layer, then the framework can interpret the JavaScript upon runtime and route
API calls to their respective functionality in the platform’s native programming language.

From reviewing and assessing existing literature on cross-platform development,
we frequently encounter criticism (e.g. [11, 9, 7, 12]) towards the frameworks for
potentially imposing restrictions and constraints on app developers, especially so when
cross-platform frameworks are compared to the traditional platform-specific Native
development approach. A frequently criticised part of cross-platform development
frameworks is their ability to take advantage of platform- and device features (e.g. [9]),
i.e. that they do not sufficiently deliver programmatic access to such as the device’s
contact list, camera, GPS and so on, features that are vital for the creation of complex
apps. This often unbacked criticism of technical frameworks is our motivation for this
current research. We are interested in whether or not such frameworks can in fact make
use of platform- and devices features typically included in already-deployed apps. Thus,
for our experiment we downloaded 300,000 Android apps which have all been deployed
to the Google Play app store. Downloading Android apps for analysis was made possible
by the AndroZoo repository, a massive database containing more than 5,8 million Android
installation files (APKs) [13]. We then extracted the list of permissions from each app,



a permission typically representing a platform- or device feature the user must grant an
app access to use, e.g. reading of incoming SMS or access to modifying device settings.
The extracted dataset was then processed, leaving us with a list of commonly requested
permissions, or features as they become in our context. These features were then
mapped against their availability in five popular cross-platform development frameworks,
namely Ionic Framework, React Native, NativeScript, Xamarin.Forms, and Titanium
[14]. Our findings indicate that all five frameworks are in fact capable of accessing and
programmatically exposing the absolute majority of the most common features extracted
from the 300,000 apps, thus seemingly contradicting frequently encountered claims in
previous research.

The rest of this paper is organised as follows: The upcoming section is devoted to
related work, in which we present related research and studies we build on and discuss
in relation to. In section 3, our research question is presented along with an overview of
the research design. Our findings are then presented in section 4, and further discussed in
section 5. Lastly, section 6 concludes the paper and provides directions for further work.

2 Related Work
Cross-platform mobile development has been subject to scholarly research since the
popularization of the smartphones and app stores, with early work including studies by
Heitkötter et al. [6], Kramer et al. [15], and Charland and LeRoux [16]. The nature
of these articles range from descriptive to technical, some aiming to communicate the
technical possibilities and shortcomings of cross-platform frameworks (e.g. [6, 15]),
while others (e.g. [16]) discuss more overarching topics including performance and user
experience of cross-platform apps. In common, they all discuss the importance of device-
and platform features, and to a varying degree criticise the facilitation of access to such
features in cross-platform development frameworks. In more recent years, mobile app
stores have enjoyed the attention of numerous research projects [17], and mining and
analyses of their content has previously led to interesting findings also in the context
of cross-platform app development. There has been a slight shift in methodology, as
where previous work has often been descriptive and holistic, research on cross-platform
development now increasingly incorporate analyses of ultra-large software repositories
such as the Google Play Store [18].

To help better understand the value and presence of cross-platform built apps in the
Google Play store, a total of 11,917 Android apps were analysed by Malavolta et al. [19].
They found that (i), based on app store reviews, cross-platform apps were valued similarly
to traditionally developed Native apps, and (ii) that cross-platform apps tend to request
access to the same Android permissions as Native apps. They also state that development
frameworks need more work to better support platform- and device features, which is the
investigative goal for our current study. Thus, we build on the work presented in [19], and
further investigate where they left off, specifically targeting Android permissions.

A sample-wise much larger study is presented by Viennot et al., communicating
results from the analyses of 1,1 million Android apps [20]. The focus of the study is
split between an architecture proposal for the crawling and analyses of apps, and (i) the
rating of app-pairs, i.e. apps that exist in both Google Play Store and Apple’s App Store,
(ii) the use of advertising platforms, cross-platform development frameworks and similar
third-party libraries, and (iii) the presence of secret service tokens in decompiled source
code. While they do not focus on the analysis of permission usage, their study is, to the
best of our knowledge, the largest of its kind in terms of sample size. Thus, we can draw



from their work in terms of architecture and tools, e.g. their proposed used of certain
software for the decompilation and processing of Android apps.

We also find relevant studies of non-technical nature, including previous work carried
out by Biørn-Hansen, Grønli and Ghinea. Their study assessed 14 implementation-
oriented academic studies as an effort to identify which platform- and device features
are commonly included in applied research on cross-platform mobile apps [8]. With the
data presented in our current study, we can discuss the appropriateness of the findings
and recommendations presented in [8], and whether or not the studies traversed in fact do
experiment with features commonly included in real-world deployed apps. Their findings
indicate that a variety of device sensors including proximity, accelerometer and GPS are
typically included in research on cross-platform apps, along with Internet/network access,
camera access, and device file system access. We further discuss these findings in the
context of our own, as presented in section 4.

3 Research Design
Throughout this section, we elaborate on the steps and design making up the research
method. This starts with AndroZoo URL transformation through APK downloading,
extraction and parsing of the AndroidManifest permission file, to finally the algorithm
used for counting thus measuring frequency of permission usage. The technical part of
the study involves a series of scripts and tools to gather and analyse the Android APK
files. The flowchart depicted in Figure 1 illustrate the process further elaborated upon in
the upcoming subsections.

Figure 1: Overview of application extraction and analyses process

From our case and the assessment of existing literature as laid out in the in-
troduction and related work, we often-so find mentions of how cross-platform
development frameworks are unable to compete with the Native development



approach in the context of programmatic device- and platform feature access.
With this as our core motivation and with a mapping of features implemented in
apps deployed to Google Play Store, we pose the following research question:

RQ: How feature-complete are the top five cross-platform mobile
development frameworks?

Downloading Application Package Files
An alternative to AndroZoo would be to scrape the Google Play Store directly, how-
ever, as described by Li et al. [13], this process involves a series of steps to circum-
vent restrictions imposed by the app store to hinder such scraping. Thus, to avoid
unnecessarily dealing with such restrictions, we opted to leverage the AndroZoo ser-
vice, which goal is to cater to researchers studying deployed Android apps. An-
droZoo provided a comma-separated values (CSV) file containing metadata for more
than a million APK files1. Structure-wise, the CSV contained the following col-
umn headings: sha256, sha1, md5, dex_date, apk_size, pkg_name, vercode,
vt_detection ,vt_scan_date, dex_size, markets [13].

The sha256 value was the unique primary key used to identify a particular APK file
and was further used in the download process. We extracted all the sha256 values from
the CSV and built a URL string for each app listed in the spreadsheet. The in total 300,000
line-separated URLs were saved to a text file. The APKs were all downloaded from
the AndroZoo [13] service using the command-line interface (aria2 [21]), allowing for
configuration of parameters including maximum concurrent downloads, and the input file
containing the line-separated download URLs. The aria2 tool provided us an out-of-the-
box solution for concurrency management, resuming of downloads, and more. This was
particularly important, as AndroZoo limits concurrent downloads to 30.

Extraction and Parsing of Application Permissions
An APK’s list of permissions reside in its AndroidManifest.xml, a metadata configuration
file which is bundled together with all of the assets, resources and source code making up
the app. It was crucial that the pace of the permission list extraction was rapid, as even an
extraction time of one second per APK would result in more than 83 clock hours, given
that the method was indeed sound and did not end in failure at any point during the task.

Two tools for extracting permissions were evaluated, including Apktool and
Apkanalyzer. While Apktool provided the most comprehensive suite of features, allowing
for the extraction and decompilation of source code and manifest file, it did not match
with our requirement of sub-second extraction time. We found that the official Android
Apkanalyzer tool, part of the Android Asset Packaging Tool suite, or aapt for short,
provided a command line interface tool for easy extraction of app metadata, including
APK package name and a list of permissions, both of which were saved for analyses.

During the permission extraction stage, aapt was unable to parse the AndroidMani-
fest of 61 APKs, resulting in a final dataset of 299,939 analysable apps. This dataset was
then cleaned, involving the removal of permissions that were included more than once per
manifest file.

1CSV file from AndroZoo: https://androzoo.uni.lu/lists

https://androzoo.uni.lu/lists


Counting Permission Usage
The final step of the analysis process was the counting of permission usage, i.e. finding
how frequent a permission is encountered in the AndroidManifest.xml files traversed.
The permission counting was implemented using an algorithm based on the MapReduce
model. Thus, we build a data structure of the encountered permissions where each
permission is accompanied by a counter property which is incremented at every
encounter of the permission upon traversal of the dataset.

4 Results
To avoid reporting on less frequently used permissions, we set the minimum limit of
occurrences in the dataset to 16,000, or 5.33% of the initial dataset (300,000). We
removed six permissions from the dataset, four due to API deprecation and two more
were removed due to API changes / deprecation.

Permissions
The encountered permissions are listed in Table 1 accompanied by their number of
occurrences in the traversed dataset.

Table 1: # occurrences of permissions in the analysed apps’ manifest files

Permission Occurrences

android.permission.INTERNET 283 763
android.permission.ACCESS_NETWORK_STATE 262 937
android.permission.WRITE_EXTERNAL_STORAGE 203 987
android.permission.READ_PHONE_STATE 144 840
android.permission.ACCESS_WIFI_STATE 132 221
android.permission.WAKE_LOCK 129 690
android.permission.VIBRATE 101 920
android.permission.ACCESS_COARSE_LOCATION 98 687
android.permission.ACCESS_FINE_LOCATION 93 659
com.google.android.c2dm.permission.RECEIVE 67 451
android.permission.GET_ACCOUNTS 66 753
android.permission.RECEIVE_BOOT_COMPLETED 60 276
android.permission.READ_EXTERNAL_STORAGE 54 915
android.permission.CAMERA 49 694
android.permission.SYSTEM_ALERT_WINDOW 43 038
android.permission.CHANGE_WIFI_STATE 33 097
android.permission.RECORD_AUDIO 31 406
android.permission.CALL_PHONE 29 921
com.android.vending.BILLING 29 684
android.permission.WRITE_SETTINGS 26 208
android.permission.READ_CONTACTS 24 747
android.permission.MODIFY_AUDIO_SETTINGS 16 209
android.permission.SEND_SMS 16 195



Feature-mapping
We employed the following structure when querying for feature availability in a
given framework: "{PERMISSION_TAG or FEATURE_NAME} + {FRAMEWORK_NAME}".
Upon encountering potentially relevant search results, we systematically ensured that
the feature(s) made available through the inclusion of the permission was in fact
programmatically available from within the cross-platform development environment.
This was indeed necessary, as permissions can be included in the AndroidManifest.xml
file for use in the Native part of the cross-platform app, whilst the features provided by
the permissions may not be exposed through the cross-platform framework itself (i.e. not
accessible for the cross-platform app developer to make use of). For our study, we are
only interested in the results that could confirm or disconfirm a feature’s programmatic
availability in the set of technical frameworks, either implemented into the framework
itself, or being available through third-party plugins. In terms of frameworks, those listed
as part of Table 2 were chosen for scrutiny due to prevalence in industry outlets and in
newer research on cross-platform development [8, 14].

The order of Table 2’s content is identical to that of Table 1. Instead of listing
permissions, as we do in Table 1, we have translated each permission into their respective
device- and platform feature, e.g. ACCESS_COARSE_LOCATION from Table 1 is listed as
"Access Geolocation" in Table 2.

Table 2: Mapping of features against their availability in cross-platform frameworks

Frameworks

Feature
Ordered as Table 1

Ionic React
Native

Native-
Script

Xamarin Titanium

Internet Access 3 3 3 3 3

Access Network State 3 3 3 3 3

Write to File System 3 3 3 3 3

Read Phone State 3 3 3 3 3

Access WiFi State 3 3 3 3 3

Wake Lock 3 3 3 3 3

Vibrate 3 3 3 3 3

Access Geolocation 3 3 3 3 3

Receive Push Notifications 3 3 3 3 3

Get Accounts 3 3 ~ 3 3

Receive Boot Completed 3 7 3 3 3

Read from File System 3 3 3 3 3

Camera 3 3 3 3 3

System Alert Window 7 ~ 7 ~ 7

Change WiFi State 3 3 3 3 3

Record Audio 3 3 3 3 3

Call Phone 3 3 3 3 3

In-App Billing 3 3 3 3 3

Write Settings 3 3 3 7 3

Read Contacts 3 3 3 3 3

Modify Audio Settings 3 3 7 7 3

Send SMS 3 3 3 3 3



5 Discussion
Investigating our dataset, we can look at the data from the two analysed perspectives.
Firstly, in relation to permissions we see that the majority of apps, i.e. more than 50%,
rely on Internet connectivity, access to listen on changes to a device’s network state, and
the ability to read and write to the device storage. These findings align with those reported
by Biørn-Hansen, Grønli and Ghinea in their assessment of feature inclusion in academic
research on cross-platform app development [8]. Thus, for future applied research on app
development, findings both from this current study as well as those previously reported
in [8] should provide a point of departure in terms of which features to include to achieve
generalisability and validity in both academia and practice.

Secondly in terms of feature mapping, it interesting to see that the majority of the
features included for assessment are in fact programmatically exposed to the cross-
platform development environments through the respective development frameworks.
As such, developers opting for a cross-platform development approach are likely to
find that the device- and platform features they may be accustomed to from the Native
development approach, are in fact very much available. Revisiting some of the related
work assessed in section 2, our findings are a step towards better understanding of cross-
platform frameworks’ facilitation of access to platform- and device features, as discussed
by Malavolta et al. [19]. However, our research does not take into account the availability
of less-used features. Thus, for apps that rely on custom features, e.g. third-party SDKs
lacking support for the frameworks we have assessed, our results might not be applicable.

Table 2 also report of certain features that we did not manage to find included in the
frameworks scrutinised. We found that the System Alert Window permission was not
directly accessible from within any of the cross-platform framework environments. This
permission is what allows apps such as Facebook Messenger to draw on top of other apps
and thus always be visible to the user, i.e. how they made the infamous overlaying chat
heads user interface on Android [22]. While this arguably could be implemented in native
code and exposed to the cross-platform code environments, we identified no such efforts.
However, React Native’s in-app debugger window relies on the permission, but we did
not find any mentions of the debugger window being able to draw on top of other apps
than itself. We also identified a Xamarin.Android project2 with the ability to overlay other
apps, alas – it was not implemented in the Xamarin.Forms cross-platform framework, as
these are two different development environments. Thus, we marked both React Native
and Xamarin with the symbol ~, representing implementation plausibility.

It is important to note that while all the frameworks could possibly be capable of
supporting the features marked with 7 or ~ in Table 2, we did not manage to identify any
official or third-party efforts to achieve such implementations. However, NativeScript’s
documentation boasts the framework’s extensiveness, as they state that all platform APIs
can be accessed from a JavaScript environment [23]. Nevertheless, and based on our
reported findings – in the event of a product specification requiring superimposed and
"always visible" user interface elements, the Native development approach is to the best
of our knowledge the only feasible approach.

2https://github.com/LifeCoder45/chatheads-xamarin



Finding: The feature-completeness of the frameworks assessed range from
95.46% to 86.37%. The two top-ranking frameworks are equally feature-
complete, being Ionic and Titanium, both of which were identified to
support all but the System Alert Window feature.

6 Conclusion and Further Work
Our motivation for conducting the research at hand was the frequent encounter of
unbacked claims regarding constraints imposed by cross-platform mobile development
frameworks. We set out to verify the actuality of these claims through the extraction
and aggregation of permission schemes from 300,000 deployed Android apps. The
permissions were translated to device features, e.g. programmatic access to device
camera, then we mapped the results to the availability of the features in five cross-platform
frameworks. Our findings indicate that the majority of the most-used features identified
in the dataset are in fact exposed and made available through the assessed frameworks.
These results contradict claims put forth by previously identified research on the subject
and may be of assistance in decision-making and to further bring forth the possibilities of
cross-platform app development as an alternative to the Native development approach.

As the technical part of the study involved numerous individual scripts and tools,
we aim to work towards a complete toolchain for downloading, extraction, and analyses
of primarily Android applications. Our hypothesis is that through the development and
deployment of such a toolchain, large-scale Android app analyses and experiments can
be conducted with less overhead in terms of code and third-party tools. With the potential
of millions of files that must be decompiled, traversed, analysed and transformed,
computational performance is of high importance. Thus, for further work we would also
put emphasis on evaluation of execution environments and the performance of existing
tools developed for tasks including extraction and decompilation of APKs into code that
resemble source code.

Acknowledgement
We wish to acknowledge the important and exhaustive work of the AndroZoo research
group at the University of Luxembourg, making it possible to mass download Android
APK files without scraping the Google Play Store.

References
[1] App Annie. Mobile app revenues 2015-2020. https://www.statista.com/

statistics/269025/worldwide-mobile-app-revenue-forecast/, Novem-
ber 2016. Accessed: 2018-4-19.

[2] Rita Francese, Carmine Gravino, Michele Risi, Giuseppe Scanniello, and Genoveffa
Tortora. Mobile app development and management: Results from a qualitative
investigation. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems, pages 133–143. IEEE, July 2017.

[3] Henning Heitkötter and Tim A Majchrzak. Cross-Platform development of business
apps with MD2. In Design Science at the Intersection of Physical and Virtual

https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/


Design, Lecture Notes in Computer Science, pages 405–411. Springer, Berlin,
Heidelberg, June 2013.

[4] Raj Rahul and Seshu Babu Tolety. A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach. In 2012 Annual
IEEE India Conference, pages 625–629. IEEE, December 2012.

[5] Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muhammad Younas.
Mobile application platform heterogeneity: Android vs windows phone vs iOS vs
firefox OS. In 2014 IEEE 28th International Conference on Advanced Information
Networking and Applications, pages 635–641. IEEE, May 2014.

[6] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. Comparing cross-
platform development approaches for mobile applications. In Proceedings 8th
WEBIST, pages 299–311. SciTePress, April 2012.

[7] Mounaim Latif, Younes Lakhrissi, El Habib Nfaoui, and Najia Es-Sbai. Cross plat-
form approach for mobile application development: A survey. In 2016 International
Conference on Information Technology for Organizations Development (IT4OD),
pages 1–5. IEEE, March 2016.

[8] Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. Baseline
requirements for comparative research on Cross-Platform mobile development: A
literature survey. In Proceedings of the 30th Norwegian Informatics Conference.
Bibsys, November 2017.

[9] Mohamed Lachgar and Abdelmounaïm Abdali. Decision framework for mobile
development methods. International Journal of Advanced Computer Science and
Applications, 8(2):110–118, 2017.

[10] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. Evaluating Cross-
Platform development approaches for mobile applications. In Web Information
Systems and Technologies, Lecture Notes in Business Information Processing, pages
120–138. Springer Berlin Heidelberg, 18 April 2012.

[11] Luis Corral, Andrea Janes, and Tadas Remencius. Potential advantages and
disadvantages of multiplatform development Frameworks–A vision on mobile
environments. In Procedia Computer Science, volume 10, pages 1202–1207.
SciVerse ScienceDirect, 9 August 2012.

[12] Mounaim Latif, Younes Lakhrissi, El Habib Nfaoui, and Najia Es-Sbai. Review of
mobile cross platform and research orientations. In 2017 International Conference
on Wireless Technologies, Embedded and Intelligent Systems (WITS), pages 1–4.
IEEE, April 2017.

[13] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. AndroZoo++: Collecting millions
of android apps and their metadata for the research community. arXiv [cs.SE],
September 2017.

[14] Sacha Greif, Raphaël Benitte, and Michael Rambeau. Mobile & desktop
frameworks. https://stateofjs.com/2017/mobile/results, December 2017.
Accessed: 2018-3-1.

https://stateofjs.com/2017/mobile/results


[15] Dean Kramer, Tony Clark, and Samia Oussena. MobDSL: A domain specific
language for multiple mobile platform deployment. In 2010 IEEE International
Conference on Networked Embedded Systems for Enterprise Applications, pages 1–
7. IEEE, November 2010.

[16] Andre Charland and Brian LeRoux. Mobile application development: Web vs.
native. Queueing Syst., 9(4):20, April 2011.

[17] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
A survey of app store analysis for software engineering. IEEE Transactions on
Software Engineering, 43(9):817–847, 2017.

[18] University of Luxembourg. AndroZoo publications. https://androzoo.uni.lu/
publications. Accessed: 2018-4-16.

[19] Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and Valerio Terragni. Hybrid
mobile apps in the google play store: An exploratory investigation. In Proceedings
of the Second ACM International Conference on Mobile Software Engineering and
Systems, MOBILESoft ’15, pages 56–59, Piscataway, NJ, USA, 2015. IEEE Press.

[20] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google
play. In The 2014 ACM international conference on Measurement and modeling
of computer systems, volume 42, pages 221–233, New York, NY, USA, June 2014.
ACM.

[21] Tatsuhiro Tsujikawa. aria2. https://aria2.github.io/, 2017. Accessed: 2018-
4-12.

[22] Keval Patel. Create chat heads like facebook mes-
senger. https://medium.com/@kevalpatel2106/
create-chat-heads-like-facebook-messenger-32f7f1a62064, Novem-
ber 2016. Accessed: 2018-4-17.

[23] Deyan Ginev and Nikolay Tsonev. Accessing native
APIs. https://docs.nativescript.org/core-concepts/
accessing-native-apis-with-javascript, January 2018. Accessed:
2018-4-19.

https://androzoo.uni.lu/publications
https://androzoo.uni.lu/publications
https://aria2.github.io/
https://medium.com/@kevalpatel2106/create-chat-heads-like-facebook-messenger-32f7f1a62064
https://medium.com/@kevalpatel2106/create-chat-heads-like-facebook-messenger-32f7f1a62064
https://docs.nativescript.org/core-concepts/accessing-native-apis-with-javascript
https://docs.nativescript.org/core-concepts/accessing-native-apis-with-javascript

	Introduction
	Related Work
	Research Design
	Downloading Application Package Files
	Extraction and Parsing of Application Permissions
	Counting Permission Usage

	Results
	Permissions
	Feature-mapping

	Discussion
	Conclusion and Further Work

