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Abstract

Count queries belong to a class of summary statistics routinely used
in basket analysis, inventory tracking, and study cohort finding. In
this article, we demonstrate how it is possible to use simple count
queries for parallelizing sequential data mining algorithms. Specifically,
we parallelize a published algorithm for finding minimum sets of
discriminating features and demonstrate that the parallel speedup is
close to the expected optimum.

1 Introduction
A fundamental problem in data analysis, data mining, and machine learning is
feature selection. A particular instance of this problem is finding a minimum
set of data attributes that preserve a given equivalence relation in the data.
Examples of this instance for varying equivalence relations include finding minimal
length candidate keys in databases [4], finding minimal length classification rule
antecedents [10], and haplotype tagging by minimal sets of single nucleotide
polymorphisms [15]. The general problem is well known to be NP-hard and
polynomial time approximation properties can be related to those of set covering
[15].

The notion of polynomial time being efficient is problematic when quantities
become really large, such as in next generation sequencing experiments where
data from single experiments is measured in terabytes [12]. Even low exponent
polynomial time algorithms can be impractical under such circumstances.

Our main technical contribution is a formulation of a previously published
efficient sequential approximation algorithm for attribute selection [15] in terms of
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count queries. We demonstrate that this formulation achieves a parallel speedup
close to the expected optimum when data access is distributed. Furthermore,
our experiments suggest that count queries can serve as a data access mechanism
that allows efficient parallelization of sequential algorithms that can be difficult to
achieve otherwise.

2 Related work
Count queries belong to a class known as online analytical processing (OLAP)
queries, often considered in the context of business intelligence and statistical
databases. In public health, count queries are essential operations for most
automatic biosurveillance systems where the time-series data which these systems
analyze are responses to count queries [11,13]. In general, quantitative queries, i.e.,
queries that return either reals or integers, have been used to analyze combinatorial
problems such as graph reconstruction [6], finding counterfeit coins using scales [7],
learning concept classes in the context of statistical learning theory [9], and afford
private data access [5].

Counts are also used to compute small synopses or “sketches” of large amounts
of data that can subsequently be used for efficiently approximating a class of
queries [3]. However, the class of queries that can be approximated this way is
limited [8].

Our work also relates to Blelloc et al.’s work on parallel set-cover [2], except that
their approach does not preserve established non-parallel approximation bounds
of solution optimality.

3 Minimum sets of discerning attributes
Any partition of a set X has an equivalence relation associated with it, consisting
of pairs of elements that are co-located in the same equivalence class. The
complement of this equivalence relation consists of all pairs of elements found
in different classes. For attribute set induced partitions, this means that these
pairs are discernible by the set of attributes that induced the partition. Formally,
let

π(a) = {(x, y) ∈ X2|a(x) 6= a(y)}

denote the set of pairs of elements in X that are discernible by attribute a. For
a subset A′ ⊆ A of attributes A on X, we let the pairs discernible by A′ be
π(A′) = ∪a∈A′π(a).

Given a function f on X, we can express our general problem as wanting to
find a minimum A′ such that π(A′)∩π(f) ⊇ π(A)∩π(f). The set M(A, f) defined
as

M(A, f) = {B ⊆ A|π(B) ∩ π(f) ⊇ π(A) ∩ π(f)}



is the set of candidate solutions among which we seek a minimum cardinality
element. Our previous analysis [14, 15] used the following simple but effective
greedy algorithm for finding the smallest element of M(A,A): Add to the initially
empty solution S the attribute a for which π(a) contains the most elements of
π(A) not already contained in π(S). Continue doing this until π(S) ⊇ π(A). This
is essentially a set-covering based approximation algorithm.

The attribute chosen in the simple algorithm above is the attribute a that
maximizes |(π(A) − π(S)) ∩ π(a)|. We now note that for any set Π ⊆ X2,
maximizing the expression |(Π − π(S)) ∩ π(a)| is equivalent to minimizing |Π −
π(S ∪ {a})|. This latter quantity |Π− π(S ∪ {a})| is the number of left over pairs
in Π not discerned by S ∪ {a}. We can express this quantity as follows:

|Π− π(S ∪ {a})| = leftover(Π, S ∪ {a}), (1)

where leftover is defined as:

leftover(Π, S) =
∑
x∈X

|Π ∩ ([x]S)2|
|[x]S|

.

Algorithm formulations
The mda function in (2) implements the greedy MDA algorithm outlined above.
The inputs are Π – a set of pairs, A – a set of attribute functions, and a real value
τ in the unit interval. The algorithm minimizes (1), and stops once the selected
attributes in S discern between a fraction τ of the pairs in Π.

mda(Π, τ, ∅, S) = S

mda(Π, τ, A, S) = if (
|π(S)|
|Π|

≥ τ) S else

let a = arg min
a∈A

leftover(Π, S ∪ {a})

in mda(Π, τ, A− {a}, S ∪ {a})
mda(Π, τ, A) = mda(Π, τ, A, ∅)

(2)

If we let Π = π(A) and τ = 1, we have the exact same algorithm as we used
for the haplotype tagging problem, and approximation properties established
previously [15] hold. We can however choose to let Π be the set of pairs of
elements having a different outcome or label, say Π = π(f) where f is a labelling
function. If used in this way, the solution sets computed can be used as templates
for classification rule antecedents such as we have done constructing among
others Fuzzy classifiers [16]. The parameter τ then becomes a “noise cancelling”
parameter [14]. Note that f could discern between elements that A does not, i.e,



π(f)−π(A) might be non-empty, and in order to interpret τ in a better “calibrated”
manner it can be useful to let Π = π(f) ∩ π(A). Otherwise a discerning fraction
of 1.0 might never be possible.

We now turn to the formulation of the above algorithm in terms of count
queries. Let partition(a, l) be a function that computes the partition of the list
l of elements from X induced by a and returns it as a list of equivalence classes.
Since we want to iteratively refine a given partition by partitioning each current
equivalence class by the same given attribute, we define a function refine as:

refine(a, L) = cat([partition(a, l)|l ∈ L]), (3)

where cat concatenates the lists in its argument. Let hist(a, l) be a function that
computes a histogram over values that function a takes for the elements in list l.
Given the histogram (n1, n2, . . . , nk) = hist(a, l), the number of pairs of elements
in l that are discerned by a can be expressed as:

k−1∑
i=1

k∑
j=i+1

ninj.

This sum can be computed in linear time in the length of the histogram by

pairs([], x, y) = x

pairs(h, x, y) =

let n = head(h)

in pairs(tail(h), x+ yn, y + n)

pairs(h) = pairs(h, 0, 0).

Note that the function head returns the first element in the argument list, while
the function tail returns a list equal to argument list with the head removed.

If we let C = [C1, C2, . . . , Cl] be a list of equivalence classes induced by S, each
represented as a list of elements, the number of pairs discerned by f that are not
discerned by S, i.e., leftover(π(f), S), can be computed by

leftover(f, C) = sum([pairs(hist(f, C))|C ∈ C])

where sum(l) is a function that returns the sum of the elements in the list l.
We are now ready to formulate the MDA algorithm we presented in (2) in

terms of partition and hist as (4). The early halting noise reduction parameter



b is computed as b = dτ ∗ |π(f)|e, where τ is the fraction of pairs we want covered.

mda(f, b, C, A, S) =

if (leftover(f, C) ≤ b) else

let a = arg min
a∈A

(leftover(f, refine(a, C)))

in mda(f, b, refine(a, C), A− {a}, S ∪ {a})
mda(f, τ, A) =

mda(f, dτ ∗ pairs(hist(f,X))e, [X], A, [])

(4)

Partitions, histograms, and count queries
In the algorithm in (4), the only actual access to data is made in the functions
partition and hist. Let the function count take as input a list of attribute –
value pairs, compute a counting query, send it to the data base containing X and
return the returned count. Also, again assume we can look up the range of any
attribute f using the function range.

The function partition is very similar to hist and both can be expressed in
terms of a function access

access(fun, f, p) =

let l = [(f, v)|v ∈ range(f)]

in fun(count, [p+ [x]|x ∈ l])

as

hist(f, p) = access(map, f, p)

partition(f, p) = access(filter, f, p)

map(f, l) = [f(x)|x ∈ l]
filter(f, l) = [x|x ∈ l, f(x) 6= 0].

Counting counts
Let again n = |X| and m = |A|. The number of calls to count made by a call
to hist(f, p) or partition(f, p) is as before exactly |range(f)|, which is O(n). If
we assume that all ranges are constant, the cost of hist and partition is also
constant. In either case, let this number of count calls be denoted by c(n).

A clever implementation of the MDA algorithm in (4) only needs to compute
the let a = arg min... statment, and can remember the refinement of C by a
computed there, as well as the number of undiscerned pairs of f used in the
stopping criterion. In order to analyze the number of calls to hist and partition

made it is useful to note that mda essentially does recursive partitioning where



each level of the split tree is split on the same attribute. We can think of this as
a proper c(n)-ary tree. As the leaves of this tree represent a partition of X, an
upper bound on the number of leaves is n. The maximal number of internal nodes
for a given number of leaves we find in a binary tree, and is n − 1 for n leaves.
It is at these internal nodes that we perform computations. Also note that the
number of levels in this tree corresponds to the size of the solution returned. Since
this cannot exceed the number of attributes m we can at most have p internal
nodes where p ≤ min(n − 1,m). At each internal node of this tree we have to
evaluate the remaining attributes to determine which one to split on. For an
internal node at level i we have to evaluate m − i attributes. Let ni be interior
node i ∈ {1, 2, . . . , p}, and let l(ni) denote the level node ni is on. If e denotes the
the number of evaluations we have to make in total, we have that:

e ≤
p∑

i=1

(m− l(ni)) = pm−
p∑

i=1

l(ni) ∈ O(pm).

A more precise bound can be found by considering an upper bound for
∑p

i=1 l(ni).
We know that one interior node has to be the root, i.e., it is on level 1, all the
p− 1 other have a level at least 2. This yields

e ≤ pm− (1 + 2(p− 1)) = pm− 2p+ 1 = p(m− 2) + 1.

Each of these evaluations require a call to partition yielding a list of lenght
c(n) for each of which a call to hist is made, yielding a count count of at most
on the order of c(n)2. In total we get that mda makes at most on the order of

c(n)2(p(m− 2) + 1)

calls to count.

4 Distributed Count Queries
As we can see from the analysis above, the number of calls to count that mda

makes in this case is O(m(m − 2)) if we consider c(n) constant. We now observe
that if we partition X into k parts X1, X2, . . . , Xk and store each Xi in data base
di, we have that

count(p) =
k∑

i=1

countd(p, di). (5)

where the function countd(p, d) is a version of count that in addition to the
pairlist p, takes one extra parameter d, the data base which to query. We denote
the parallel version of mda for k databases as pmdak.



The function countd(p, d) can be viewed as a remote procedure call. In this
setting the parameter d serves as the address to where the query p is sent. Remotely
at location d, the local store d executes and returns the result of

response(p) = process(p).

The process function is defined by:

process(p) = postprocess(performquery(translate(p))).

The function translate translates the incoming query representation p to fit the
local schema. Doing this translation locally means that the central process does
not need to know if the data is spread among disparate schemas. The translated
query is passed to performquery to produce the real count on the local data store.
This real count is then potentially transformed by postprocess. One example of
such post processing is adding noise to the count in order to enhance privacy
protection. In the simplest case, both translate and postprocess do essentially
nothing but passing their arguments along.

We now make the assumption that a local data store can process a count query
in time that is linear in the size of the store. If we now partition the data into
k equally sized parts, each approximately of size n/k, the computation of the
individual stores’ counts is O(n/k). However, we need to let these k stores know
that we want counts and we need to receive and sum these k counts. One simple
way to do this, reflecting (5), would be for mda to call count(p, [d1, d2, . . . , dk])
instead of count(p) where this two-argument count is defined as

count(p, l) = sum(pmap(d→ countd(p, d), l))

where pmap(f, l) is a function that works just like map but applies the function f
to all elements in l in parallel.

Assume that sending queries and receiving counts takes constant time, having
mda call count with the full list of data stores achieves a O(n/k + k) time
complexity. The additional k comes from sending, receiving, and computing the
sum of the k counts received in responses to the queries.

Organizing the k data stores into a tree of depth on the order of log(k) and
requiring that each store can do a little extra work, we can do better. To this end
we now add the extra work into response. In our implementation each data store
knows the roots of its subtrees, aka. its children. We assume that there exists a
list s of these children available for use in response. We can now define response

as

response(p) =

let c = [p→ countd(p, di)|di ∈ s]
in sum(pmap([p→ process(p)] + c)).



What now happens is that on receipt of a remote countd(p, di) call, the store di
computes in parallel the local count as well querying all its children for theirs.
Finally, response returns the sum of the results. If we now change the function
mda to call count with the list l consisting solely of the root of our stores tree, we
achieve a time complexity of O(n/k + log k).

In practice, if the communications time is significantly less than the query
computation time, we can expect to improve the complexity to approach O(n/k)
using a suitable organization of the stores.

Algorithm time complexity
The algorithm we presented for the haplotype tagging problem had running time
O(np

2
(2m−p+1)) where p = min(n,m). Assuming m ≤ n this becomes O(nm

2
(m+

1)) which is O(nm2). We have established that mda issues O(m(m− 2) + 1) calls
to count which is O(m2). Applying the hierarchical structure of partitioned data
described above, we achieve a running time for the algorithm of O(m2(n/k+log k))
for n data points equally partitioned among k stores.

5 Experimental Results
We implemented the parallel algorithm pmdak described in Section 4 which runs
k parallel data stores in k processes. The main pmdak process queries the k data
stores in parallel using the mechanism described in Section 4. We selected three
different data sets and compared the running times of pmdak where k ∈ {2, 4, 8}.

Setup
All experiments were run using a Dell PowerEdge M610 with two Intel Xeon E5620
2.393 Ghz 4 core CPUs and 90GB RAM running Ubuntu under VMWare ESXi 5.

Data sets

We selected three data sets from UCI machine learning data repository as initial
datasets. The two criteria used to select experimental data sets are 1) the number
of the instances should be large enough to distinguish the query time among
different strategies and 2) the attributes should be categorical and able to discern
most instances to suit the use case of the proposed algorithm. The properties of
the three data sets are listed in Table 1.

The first data set was derived from the USCensus 1990 raw data set which
includes approximately 2.5 million records. We arbitrarily chose 8 categorical
attributes from 68 total attributes and each of them has a number of values ranging
from 2 to 4. The second data set is the one used for the Third International
Knowledge Discovery and Data Mining Tools Competition. This data set contains



Data set # of attrs # of records sizes of ranges
US Census 8 2,458,285 2-4

KDD Cup 99 10 4,000,000 2-3
Covertype 12 581,012 3-7

Table 1: Description of the three experimental data sets

raw TCP dump data for a local-area network (LAN) simulating a typical U.S.
Air Force LAN, which includes a wide variety of intrusions simulated in a military
network environment. The original data set has 4 million records and 42 attributes.
We selected all 7 attributes which have discrete values and the sizes of the ranges
is between 2 and 3. We arbitrarily selected 3 other attributes and converted them
into binary ones. The third data set is the covertype data set used to predict
forest cover type from cartographic variables. It has approximately a half million
instances and 54 attributes in total. We discretized the ten quantitative attributes
into three categories each and combined four binary attributes into one. In addition
to the classification attribute which has seven values, we converted the data set
into one with 12 categorical attributes having the range sizes in {3, 4, 7}. In order
to create datasets of sizes up to 222 records, random subsampling with replacement
was used.

Implementation

Programs were implemented in Python. As described in Section 4, pmdak computes
count(p) by sending the same target query (i.e., a list of attribute-value pairs) to
k databases each of which runs in one of k different processes independently. On
receiving all counts, pmdak computes the sum and uses this in further computations.
Recorded running time is overall running time and includes not only database
query time but also communication time and other operating system overhead.

Results
We ran the parallel algorithms pmdak, k = 2, 4, 8 on the three data sets with
different sizes (e.g., number of records). The records in each data set were randomly
sampled from the original, and they were inserted into Sqlite3 databases. For each
k, we repeated the algorithm for 10 times. The average running time are showed
in Figure 1(a), 1(b) and 1(c).

We also compared the speedups obtained by using different numbers of
processors in Table 2. Let Si,j = Ti/Tj be the speedup of using j processors versus
using i processors where Tl represents the running time of the parallel algorithm
using l processors. The results are summarized in Figure 1 and Table 2.

For a theoretical speedup s, Amdal’s law gives the maximum expected
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(b) KDD Cup data set
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(c) Covertype data set

Figure 1: Average running times (in binary log) of the parallel algorithm pmdak run in
k(k = 2, 4, 8) processes. The error bars show 95% confidence intervals.

Data size
US Census KDD Cup 99 Covertype
S2,4 S4,8 S2,4 S4,8 S2,4 S4,8

216 1.70 1.66 1.75 1.48 1.73 1.52
218 1.94 1.88 1.89 1.87 1.92 1.79
220 1.99 1.93 1.85 1.77 1.96 1.90
222 1.99 1.86 1.99 1.90 1.99 1.94

Table 2: Speedups of the parallel algorithms using different number of processors
running on the three experimental data sets with different sizes

improvement to an overall system when only fraction p of the system is improved
[1]. Using Amdal’s law, we can formulate the expectation of Ss,2s as

Ep[Ss,2s] =
(2 p− 2) s− 2 p

(2 p− 2) s− p
(6)

For p = 0.98 we get E0.98[S2,4] = 1.92, and E0.98[S4,8] = 1.86. These numbers
approximate our observed speedups for size 222 databases. In general, solving
(6) for p and using our observed values, we obtain values for p given in Table 3,
which suggest that the portion of computations that are performed in parallel
increase with data size. Furthermore, these results suggest that we are achieving

Size 216 218 220 222

p 0.910 0.978 0.981 0.992

Table 3: Estimated fraction of computations done in parallel at optimal speedup as a
function of data size.

improvement close to the theoretical maximum for large portions of the performed
computations.



6 Summary and Discussion
Count queries are well suited for distribution. We show that using a simple tree
type topology network allows us to compute queries on n data points partitioned
among k stores in O(n/k + log k) time.

We further show that for sequential algorithms that can be reformulated
in terms of count queries, including the class of algorithms that operate on
histograms, significant speedups can be achieved by the use of distributed count
queries. We did this by reformulating an algorithm originally devised for haplotype
tagging by single nucleotide polymorphisms in terms of count queries using a tree
topology network. Used like this, distributed count queries can offer parallelization
of sequential algorithms that are not easy to optimize otherwise.

The experimental results suggest that we achieve close to optimal speedups
for large fractions (> 0.9) of the performed computational work. This fraction
increases as data size increases, indicating increased benefit of parallelization as
data size increases.
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