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Abstract

Detecting data races in modern code executing on multicore processors
is challenging. Instrumentation-based techniques for race detection not
only have a high performance impact, but also are not likely to be
certified for safety-critical systems. This paper presents a data race
detector based on the well-known lockset algorithm in the stream-based
runtime verification language TeSSLa, using dynamic data structures
to record lock operations and memory accesses. Such a specification
can then be instantiated with particular parameters to make it suitable
for the more limited planned monitoring using field-programmable gate
arrays (FPGAs).

1 Introduction

Multicore processors have become commonplace. They offer speed boosts in two
ways in modern IT: on the one hand, different tasks can run concurrently on
multiple cores, sharing operating system resources. On the other hand, developers
have the option of tailoring their applications to make use of multiple cores by
explicitly introducing concurrency, usually in the form of threading. These threads
by their very definition are not isolated from each other, but have the possibility
to affect each other: memory can be shared between threads, and synchronization
APIs allow for higher levels of abstraction. For programs, for example, written in
the C programming language, a careful combination of modification of shared data
and locking/synchronization is necessary (other programming languages like Go use
message passing and leave such synchronization to the runtime library).

Using those concurrency constructs and their interactions incorrectly leads to
widely discussed problems, such as deadlocks [I] and data races [8]. While the
first type of problem (where a number of processes wait cyclically for a set of
shared resources) is easily detectable at runtime, or through an obviously stuck
application, the latter is more insidious: there may not be a definitive sign of
misbehaviour, as read/write or write/write data races only subtly corrupt the data
the application is working with: in a read /write race, one thread reads data, which is
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then subsequently overwritten by another thread, leading the first thread to proceed
under the assumption that it has the current value. In a write/write race, another
thread overwrites a previously written value, leading to a similar problem. We note
that data races are not per se a fault in a program, but are usually unintended —
certain lock-free algorithms are the exceptions.

Traditionally, these types of software defects have been approached from two
sides: static analysis checks the source code and reports potential errors. To that
end, over-approximations of the behaviour of the program are used (e.g., in terms of
variable accesses and lock operations), which may lead to uncertainties on whether
a particular behaviour will actually occur during runtime due to general issues on
decidability. In contrast to analyzing the code before it actually runs, dynamic
analysis looks at the actual behaviour of a program. Although this only gives
a limited view on the behaviour of the actually executed code, it allows for the
precise reporting of actual occurrences, which can be used to predict potential
erroneous behaviour across different runs. As dynamic analyses need to record
historic behaviour during execution, they often interfere in terms of computation
time and memory consumption. For example, the popular dynamic ThreadSanitizer
integrated with the LLVM compiler toolchain slows down execution by a factor of 10
to 100, depending on the workload [I3]. This is one reason why dynamic analysers
are traditionally only employed during development and testing, but not included
on the production system. Static analysis on the other hand frequently generate too
many warnings of potential problems for developers to be useful.

The juxtaposition of static and dynamic analyses may make them seem like
a choice developers can make. But in fact, dynamic analyses often rely on an
additional static phase, which is usually required to instrument the additional code
for the dynamic monitoring into the program. For example, ThreadSanitizer adds
those during compilation, and contains analyses on where to put them, and to
avoid them where they are unnecessary for performance reasons. We note that the
technique in general relies on the availability of the source code and the possibility
of recompilation.

In the EU Horizon 2020 project “COEMS - Continuous Observation of
Embedded Multicore Systems”, we are half-way on our journey to a hardware-based
solution: even though the field-programmable gate array (FPGA), which will check
the instruction trace in parallel to the running system, is still under development, we
now have already in place the stream-based specification language, a software-based
simulation of checks of events against the specifications, and the necessary static
analyses that we later need to leverage the hardware-based monitoring to its full
pontential. In our contribution, we show how to formulate the task of checking for
potential data races with the stream-based specification, and use a software-based
simulation of the monitoring hardware as a proof of concept.

The paper is organized as follows: Section [2 describes dynamic data race
detection in general, and introduces the necessary events that we can monitor in
the stream-based specification language TeSSLa. Section |3| presents two different
views on the specification language that we use to encode our data race detector:
a general approach that uses dynamic data structures like maps and sets, and a
lower-level, more limited version that needs to be instantiated to monitor particular
resources due to the limitations on the FPGA. Section [4] discusses the related work,
and Section [5 concludes the paper.



voidx f(void *arg) { void* g(void *arg) {

for (int i = 0; i < 100; i++) { for (int i = 0; i < 100; i++) {
pthread_mutex_lock(&m) ; X++;
x++; }
pthread_mutex_unlock(&m) ; return NULL;

} }

return NULL;

Figure 1: Example of incorrect locking.

2 Dynamic data race detection

The standard definition of a data race is as follows [I1]: a data race in the multi-
threaded program exists when two or more threads access the same memory location
concurrently, at least one of the accesses is a write and the threads are not using
any synchronization mechanism to control their accesses to that memory. In general,
such bugs are hard to detect because they are highly timing dependent, often related
to interaction of two different modules, and their manifestation may be postponed.

For example, let us consider the code in Figure |1 and assume that functions £
and g are executed by two different threads, pt and p2, resp. In order to execute
statement x++ a thread needs to perform the following three operations:

1. loading the value of x to a register;
2. incrementing the value of the register;
3. storing the new value of the register to x.

Both threads are reading from and writing to the address of the shared variable x.
Thread p1 is accessing x using lock m, while p2 is accessing without any lock.
Therefore, other threads executing function £ may be blocked at the lock statement,
and mutual exclusion around the update is guaranteed, while any thread calling
function g like thread p2 is not doing so. This may lead to the situation in which
some of the increments get lost and the final value of x varies in each run. For
instance, the following interleaving between the threads may happen:

1. p1 loads the current value of x (e.g., 5) to a register ri;
2. p2 loads the same value of x to a register r2;

3. p1l increments r1 to 6 and writes this value to x;

4. p2 increments r2 to 6 and also writes 6 to x.

We see that the intention is that the code increments the variable twice 100 times.
Due to the observed effect (both threads writing the same value), half of the
updates may actually get lost. On the other hand, it may happen that one or
even several runs of the program do not reveal any flaws in the code, because none
such interleaving happens.

One of the most frequently used algorithms for finding possible data races is
lockset algorithm, introduced and implemented in Eraser [I1]. The lockset algorithm
finds data races by checking if a program follows a certain locking discipline. In
particular, it enforces that every shared variable is always protected by some set of
locks and this set of locks must be held by any thread accessing the variable. In the
following, we give the basic version of the algorithm. For each shared variable:



1. we identify the accesses to the variable;

2. on each access to the variable, we identify the set of locks held by the thread
which is accessing the variable;

3. we initialize the set of locks guarding the variable with the set of all locks;

4. on each access to the variable, we update the set of locks guarding the variable
by intersecting it with the set of locks held by the thread which is accessing
the variable.

The lockset algorithm is able to detect the error in our example in a single run,
regardless of the final value of x (as would be other tools like ThreadSanitizer).

In summary, we see that the lockset algorithm needs to know about relevant
events with respect to locking (which thread is taking which lock), and memory
accesses (which thread is reading from or writing to a memory location). In the
next section, we introduce the specification language that we are using, and discuss
how we encode the events above in the TeSSLa language with the help of the events
generated by our dynamic monitoring platform

3 Specifying data races with TeSSLa

We use the temporal stream-based specification language TeSSLa [5] to define the
property we are monitoring, which is a particular form of data race freedom in
this work. TeSSLa is designed specifically to generate monitors, e.g., for real
time properties, that can be synthesised and executed in FPGAs such that the
monitors can exploit the high parallelism of the hardware to process large amounts
of data online. TeSSLa makes use of asynchronous streams as underlaying model,
which allows reasoning about program traces derived from embedded trace units in
multicore processors. This leads to a very specific set of basic functions, but these
functions can be efficiently executed in hardware.

The TeSSLa specification language

In the following, we give an overview of the TeSSLa language with the focus on
the features used in our lockset specification. Informally, an event in TeSSLa is a
pair where the first component, called timestamp, determines the time and second
the value of the event. A stream is a sequence of events which appear ascending
ordered by the timestamps. A trace is a set of streams. A TeSSLa specification
takes as input a trace, transforms the streams from the trace using expressions,
built-in operations, predefined and newly defined macros (functions), and outputs
interesting intermediate or final streams.

In a specification, streams from the input trace are declared by the keyword in,
followed by the name of the stream and the type of the events on that stream.
Currently supported types of events on the input are integer, boolean, string and
unit. The limited data types are a deliberate restriction placed on TeSSLa to be
able to synthesize efficient hardware monitors.

Expressions are, essentially, if—then and if—then—else constructs, unary and
binary operators, and macro (function) calls. Unary and binary operators are
logical (conjunction, disjunction and negation) and integer (addition, subtraction,
multiplication and comparison). The semantics of expressions is defined as expected.
For example in Figure 2], the expression if writevar == "x" then () selects events on



Input Specification

909556974571: threadid 140217848600320 in threadid: Events[Int]

909556974571: readvar = "x" in readvar: Events[String]
909556976871: threadid = 140217848600320 in writevar: Events[String]
909556976871: writevar = "x" def read_x := if readvar=="x" then ()
909556981348: threadid = 140217840207616 def write_x := if writevar=="x" then ()
909556981348: readvar = "y" def access_x := merge(read_x, write_x)
909556988517: threadid = 140217840207616 def thread_accessing_x := on(access_x,threadid)
909556988517: readvar = "x" out thread_accessing_x

Output

909556974571: thread_accessing_x = 140217848600320

909556976871: thread_accessing_x = 140217848600320

909556988517: thread_accessing_x = 140217840207616

Figure 2: A TeSSLa input, specification and output.

the stream writevar which match the string "x", and emits the unit value on stream
write_x.

Built-in operations are the core of TeSSLa language and are used in order to
define further functions. Some of the built-in operations used in our example below
are default, time and last. The first parameter a of the operation default(a,b) is
a stream, while the second b can be either a value or another stream. In the case
where b is a value and a has no value at time 0, the operation adds value b at time 0
to the stream a. If stream a has a value at time 0, the default operation returns
stream a unchanged. In the case where b is a stream, the operation default returns
a stream which is obtained from a by prepending the first event from the stream b.
If the first event of the stream b occurs later than the first event of the stream a,
then the operation returns stream a unchanged. The operation time(a) returns a
stream which has the timestamps of a as both timestamps and values. The operation
last(a,b) returns a stream containing the previous value of the first stream at the
time stamps of the second.

In addition to this basic functionality, the current version of TeSSLa is able
to generate streams with sets, maps and queues as event values, but can only
be executed in a software simulatorﬂ. Operations on these data structures are
defined as expected and built-in. TeSSLa comes with a library of predefined macros
(functions), some examples are on, merge, mergeValues and collectSetWithRemove. The
expression on(a,b) is a stream of values from the stream b which appear at the
same timestamps as the values on the stream a. The expression merge(a,b) is a
stream that has an event of unit type whenever a value on a or b appears. The
expression mergeValues(a,b) is a stream containing events from both a and b. The
expression collectSetWithRemove(a,b) returns a stream of sets as event values, which
are obtained by adding values from a and removing values from b.

New macros (functions) can be defined by combining basic expressions and built-
in macros (functions). New streams are obtained by specifying parameters and
combining expressions, built-in operations or newly defined macros. Both, new
macros and new streams, are defined by using the keyword def followed by an
expression. The streams which are about to be a part of the output are declared
with the keyword out followed by the name of the stream.

Figure [2] shows an example of a TeSSLa trace consisting of streams threadid,

LCf. the web-based IDE at http://tessla.isp.uni-luebeck.de.
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readvar and writevar. The events are presented in the form of
timestamp: stream name = value .

The event values on the stream threadid are of integer type, while on streams
readvar and writevar we have string values. Notice that events on different streams
can have the same timestamps. The first three lines of the specification given in
Figure [2| starting with the keyword in, declare three input streams. The next two
lines of the specification filter read and write accesses to the variable x. If we run
this specification on the input trace given in Figure |2, the value of the condition
readvar == "X" is true at the timestamps 909556974571 and 909556988517, so the stream
read_x would have events at these two timestamps with values (), which are the
values of unit type. Stream access_x is obtained from read_x and write_x by using a
macro merge from the standard library. It has events at three timestamps with unit
values. Finally, by using the on macro, we define an output stream thread_accessing_x
that has events at the same timestamps as access_x, but the values from the stream

threadid. The output obtained by running the specification on the trace is shown in
Figure [2 as well.

Lockset algorithm in TeSSLa

We choose the lockset algorithm since it is commonly used by the state-of-the-art
static [12] and dynamic tools [13] and it is suitable for implementation in TeSSLa. In
order to implement the basic version of the algorithm in TeSSLa, we have to identify
the variables which we will check and the actions taken by the threads. Input to our
specification consists of streams which identify thread read /write accesses to shared
memory and their lock/unlock actions. In case our specification detects an error, it
is useful to issue an informative message about it. Therefore, streams which identify
function and line of code being executed are also parts of the input.

Limitations of the TeSSLa language impose some restrictions on the specification
of the lockset algorithm as well. In particular, we need to identify the set of locks held
by a thread. The proper data structure for that would be one which maps thread
identifiers to sets of locks, while TeSSLa is currently equipped only with maps where
both key and value have to be of integer type. A similar issue is raised when we
need to identify sets of locks guarding variables. One possibility to overcome this
is to explicitly specify the variables and number of different threads which we want
to check. Another one would be to track a fixed number of variables and threads.
The first one is more precise while requiring less interaction with the user. In this
work, we have opted to specify exact variables and the upper limit to the number
of created threads, while small modifications would allow us to support the second
option as well.

We have created a template which requires the variable names and number
of threads as parameters. Figure 3| shows the most informative fragment of a
specification generated from the template with variable x and two threads as
parameter values. The number of threads we could derive from inspection of the
source code, but in fact we have also developed a static analysis tool (not presented
here), which will derive an upper bound on the number of created threads through
pthread_create(). To this analysis result we add one more thread which represents
the main thread of the program. Thus, our specification will actually do the check
for three threads, namely To, Tt and T2.



——————— SHARED VARIABLES - - - - e

def read_x := if readvar=="x" then ()

def write_x := if writevar=="x" then ()

def access_x := merge(read_x, write_x)

def thread_accessing_x := on(access_x,threadid)
out thread_accessing_x

def TO_holding_locks := collectSetWithRemove (on(TO,mutexlockaddr),on(TO,mutexunlockaddr))
def T1_holding_locks := collectSetWithRemove (on(T1,mutexlockaddr),on(T1,mutexunlockaddr))
def T2_holding_locks := collectSetWithRemove (on(T2,mutexlockaddr),on(T2,mutexunlockaddr))

def TO_holding_locks_accessing_x := last(TO_holding_locks,on(TO,access_x))

def T1_holding_locks_accessing_x := last(T1_holding_locks,on(T1,access_x))

def T2_holding_locks_accessing_x := last(T2_holding_locks,on(T2,access_x))

def holding_x:=mergeValues(TO_holding_locks_accessing_x,T1_holding_locks_accessing_x,
T2_holding_locks_accessing_x)

out holding_x
def guarding_x:=default(Set_intersection(last(guarding_x,holding_x), holding_x) ,holding_x)
out guarding_x

def error_x := if guarding_x==Set_empty then ()

def error_x_in_line := on(error_x, line)
out error_x_in_line

def error_x_in_function := on(error_x,function)
out error_x_in_function

Figure 3: A fragment of lockset algorithm implementation in TeSSLa.

First we identify accesses to the shared variable x by merging read and
write events obtained at the input streams readvar and writevar. On stream
thread_accessing_x, we output the identification number of the thread accessing the
variable. Next, we identify sets of locks held by each individual thread. These
streams can be used for checking not only variable x, but also other memory accesses
and therefore, we compute them before checking specific variables. The first step
in checking variable x is to compute the sets of locks held by threads To, T1 and
T2 while accessing variable x. Then we merge values from these three streams into
stream holding_x. Now, this stream indicates the set of locks held by threads on
each access to the variable x. We proceed by computing the stream of sets of locks
guarding accesses to the variable x. The stream guarding_x is initialized with the set
of locks held by the first thread accessing x, by using the default operation with the
stream holding_x as the second parameter. That is slightly different from the original
version of the lockset algorithm where the guarding set is initialized to the set of all
locks, but does not affect the result. We choose this set as the initializer because
identifying the set of all locks would impose additional limitation, namely, it would
require us to specify the number of locks to the template, in addition to the variable
names and number of threads. The set of guarding locks is being updated on each
access to the variable x by intersecting the old value with the set of locks held by the
thread currently accessing. If the set of locks guarding x becomes empty, we issue
an event on the stream error_x. This event is present on every further access to
the variable x. We use this stream as a trigger for more informative error messages,



such as which line of the code and which function caused unprotected accesses.
Besides streams thread_accessing_x, error_x_in_line and error_x_in_functions, the
output of our specification also contains streams holding_x and guarding_x which
carry information about locks involved.

A lockset algorithm without sets. As the overall goal is to execute the stream-
based monitoring on the COEMS hardware-based technology, for future integration,
we have another hurdle to take: On the FPGAs, dynamic memory that could be used
to keep information in data structures, such as the sets and maps in the previous
specification, is scarce. To overcome this limitation, we need to instantiate the
template even further and essentially also unfold it with regard to the locks.
Specifying the lockset algorithm without advanced data structures imposes
further restrictions. In the absence of streams of sets and related operations, locking
and unlocking events have to be identified on separate streams for each different lock
and the intersection of sets has to be simulated by a more restrictive check. Since it
is impossible to build the set of guarding locks, this check confirms if one or more of
the identified locks are used by each thread on every access to the observed variable.
Therefore, for each lock, it is necessary to define a stream that checks if the lock
always protects the variable. Event on the error stream is issued when the values
on all these streams indicate that none of the locks is used on each access to the
variable. The template for such specification, in addition to the variables and the
number of threads, would need to have the number of locks as a parameter as well.

Detecting data races with TeSSLa

To detect data races with our specification, we need to obtain traces from a running
program. These traces should include the relevant information that we used in the
specification above, such as information about memory accesses and lock operations.
While in the future these events will be generated by the hardware monitor developed
in the COEMS project, here we use a software-based instrumentation, which works
very much along the lines of other runtime checkers, such as ThreadSanitizer: We
specifically instrument the code using the LLVM Compiler Infrastructure, carefully
choosing the locations where we have to emit events at runtime, so as to avoid
redundant events.

Every event that the software instrumentation generates, contains at least
the information about source code location, type of access (variable read/write,
functioncall, lock or thread operation), and the identity of the executing thread.
Depending on the type, the event is augmented with information such as the memory
location for a read or write access, any offset and size of the access; lock operations
additionally carry the lock identity on a separate stream.

We show a sample usage of the COEMS tools to check for data races in our
program, with the help of the coemseu/d41demo Docker image that we prepared for
this purpose:

$ docker run --rm -it -v $PWD:/coems -w /coems coemseu/d4ldemo /bin/bash

coems# coems_instrument_and_compile.sh example.c

x= 171

coems# /usr/bin/template_sets.tessla -t 2 -s x >data-race-sets.tessla

coems# java -jar /usr/lib/tessla.jar data-race-sets.tessla traces.log

909551503651: holding_x = Set(6308096)
909551503651: guarding_x = Set(6308096)



909551503651: thread_accessing x = 140217848600320
909551506178: holding_x = Set(6308096)
909551506178: guarding_x = Set(6308096)
909551506178: thread_accessing_x = 140217848600320
909551553371: holding_x = Set(6308096)
909551553371: guarding_x = Set(6308096)
909551553371: thread_accessing_x = 140217848600320
909551615613: holding_x = Set()

909551615613: guarding_x = Set()

909551615613: error_x_in_line = 19

909551615613: error_x_in_function = "g"

This interactive session first shows how to enter the Docker container, which we
provide with the necessary software packages installed. Inside the container, we
next run the software-based instrumentation, which will introduce event generation
into the program, compile and run it. The recorded events are in file traces.log,
subsequent invocations of the binary ./example would overwrite it with a new trace.
Then, we instantiate the general TeSSLa template for the number of threads and
the variables that we are interested in.

We use the TeSSLa interpreter with the instantiated set-based specification, and
obtain output on intermediate streams, prefixed by the timestamps. Eventually,
the specification will uncover the inconsistent locksets (at timestamp 909551615613
above), and print the involved variable, and in which source code location the access
occurred (if debugging symbols are available in the compiled binary).

To complete the demonstration, we next instantiate the template that does not
use high-level data structures at all, and which is ultimately intended to be run on
the processor trace received by the hardware monitor:

coems# /usr/bin/template_sets.tessla -t 2 -s x >data-race-nosets.tessla

coems# java -jar /usr/lib/tessla.jar data-race-nosets.tessla traces.log

909551503651: thread_accessing_x = 140217848600320

909551506178: thread_accessing_x = 140217848600320

909551553371: thread_accessing_x 140217848600320

909551615613: error_x_in_function = "g"
909551615613: error_x_in_line = 19

Again, we identify the potential race and give information about the location.
We conclude by pointing out that while in principle the trace contains a lot of
information that can now be used to aid the developer in pinpointing the interfering
threads, the final hardware-based solution has only the last two values on a stream
available. This means that additional recording will be necessary to provide
information for debugging, or a separate way of preserving the trace outside of
the tracing hardware for offline-debugging.

4 Related Work

Using instrumentation (modifying a program during or after compilation) to
introduce additional runtime checks is not a new idea.  Valgrind [7] and
ThreadSanitizer [13] are commonly used by software engineers in the development
process to check for erroneous behaviour, despite their relatively high runtime
costs [10]. RVPredict [3] follows a similar approach, and inserts calls to a Java-based
verifier during compilation with the help of LLVM and the CLANG compiler. These



purely software-based solutions work with arbitrary dynamic resource creation, i.e.,
they are not limited in the number of monitored threads, locks and locations, as we
are in our resource-constrained setting. On the other hand, they will encounter a
growing overhead for runtime checking as the number of tracked elements grows.

Other runtime-based techniques that need to instrument the program include
for example coverage analysis, where detailed information about conditionals needs
to be recorded during execution. Such information cannot be seen from the outside,
or requires heavy intervention through a debugger.

The runtime based approach can naturally only make statements about actual
observations. Alternatives to runtime checks are of course static analyses, which
inspect the source code only. For instance, Goblint [I2] is a path- and context-
sensitive analysis, which uses global invariants to calculate locksets and thread
interleavings to detect data races in multithreaded C programs. Another static
approach, by Kidd et al. [4], generates an abstraction of a program to check for data
races in concurrent Java programs, by abstracting an unlimited number of Java
objects into a finite set of abstract ones whose locks are binary.

The earlier work of the authors [9] presented a static analysis in the form of an
inference algorithm to the end of static deadlock detection. The context-sensitive
analysis summarizes locks based on their creation-site. This approach could be seen
as an improvement to the underlying static analysis that we have implemented here
to derive the number of threads and locks.

An important general difference between our approach and the dynamic and
static approaches above is that we use an intermediate specification languages.
On the one hand this increases flexibility, as we should be easily able to cover
different properties within the same framework. On the other hand, this flexibility
comes at the cost of less optimization for a particular purpose. Some of the known
optimizations related to event generation, we should be able to put into use in the
instrumentation-phase, though.

On the side of theory, static checkers aim to be sound: they (should) faithfully
report potential problems in the code, without missing real races. In practice,
especially for the C language, many tools are not sound [2]. The reason for this
is a deliberate tradeoff between soundness and precision, so as to avoid drowning
developers in a flood of false positives that stem from defensive assumptions in the
abstraction. There is a growing consensus that soundness may not practical in real-
world software engineering, and that instead analyses should aim for soundy [6],
giving useful results and insights to developers.

We are facing similar challenges, for example in our interpretation of calls to
library functions, which may or may not have side effects that could effect the
outcome. Unfortunately, very often these libraries are taken as given, and no source
code is available for analysis or instrumentation.

5 Conclusions and Future Work

We have presented our approach to checking for dynamic data races using a lockset
algorithm. Unlike other dynamic approaches, the algorithm has been encoded in the
stream-based specification language TeSSLa, and an augmented instruction trace of
the running application is checked against the lockset specification. As the ultimate
goal of the project is checking such traces in hardware (due to the high number
of events, and the performance impact of dynamic monitoring), we presented the



specification in two variations: one using data structures such as maps and sets,
and another, unfolded, specification which does not use dynamically growing data
structures, but places an upper limit on the number of threads and locks that can
be observed.

Future Work. In the COEMS project, the overall goal is to avoid costly
instrumentations and runtime penalties. The FPGA-based monitoring hardware for
ARM-based SoCs has been prototyped, and partner are currently working on the
translation of TeSSLa specifications that will parametrize the verification logic on
the FPGA. Due to novel observation features such as ARM’s CoreSight and Intel’s
upcoming IntelPT processor trace technology, developers will soon have the chance
of monitoring running programs with minimal interference. As these observation
techniques literally observe execution steps by the CPU, the high number of
generated events must at least be preprocessed in hardware: the trace must be
reconstructed from a highly compressed format, and does not include additional
arguments or values in addition to the program counter. Some instrumentation will
be necessary to introduce this additionally required data into the trace, although
care must be taken not to introduce additional computation which would affect the
execution time of the program.

The techniques that we have used here aim exactly for this minimal
instrumentation, which generates just the events necessary to soundly monitor the
given property. While development of the hardware is ongoing in the project, we
have demonstrated the feasibility of our approach with a software-based monitoring,
which uses a simulator to implement monitoring of the specification. Due to the
limited memory for dynamic data such as the locksets on the FPGA, in practice
a more refined specification is necessary that limits the observation to the relevant
code locations. We are currently developing such an analysis which aims to narrow
down the instrumentation, effectively leading to a fruitful interplay of static and
dynamic analysis.

A future task will also be providing further additional help to developers to
interpret the results. Again, in practice the challenge will be in using the limited
amount of data that can be stored in the hardware-based solution. We will consider
implementation of improvements and optimizations, present already in Eraser [I1],
as well as the hybrid algorithm of ThreadSanitizer [13].

The experiment described above can be reproduced with the Docker image
coemseu/d41demo. Further description and necessary files are available from https:
//www.coems.eu/set-based-data-race-detection/.
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