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Abstract

Automated reasoning in classical first-order logic is a core research field
in Artificial Intelligence. Most of the fully automated reasoning tools
are large and complex systems implementing proof search methods that
have significant memory requirements. This paper presents an automated
reasoning tool implemented on an iPod Nano. It is based on leanCoP, a very
compact Prolog implementation of the connection calculus, which operates
on the structure of the given formula without generating new subformula
instances. Hence, the memory requirements are significantly lower, allowing
leanCoP to run on devices with only little (random-access) memory. The
paper presents details of the proof search calculus, its implementation, and a
practical evaluation of the presented reasoning tool.

1 Introduction

Logical reasoning is a fundamental task, not only in mathematics and computer science,
but in everyday life. Automated Theorem Proving (ATP) is a core research field
in Artificial Intelligence that aims to automate formal logical reasoning. Over the
last decades the development of reasoning tools, so called (theorem) provers, has
made significant progress; see [17] for an overview. Originally designed to assist
mathematicians when proving theorems, nowadays, automatic and interactive theorem
provers have many important applications, e.g., in hardware and software verification [7,
16, 18] and program synthesis [4].

ATP is concerned with the question whether a conjecture G is a logical consequence
of a given set of axioms {Fy,...,F,}, written Fj,...,F, = G, in which Fy,... F, and
G are first-order formulae. According to the deduction theorem (for classical logic),
Fi,...,F, E G holds if (and only if) the formula (F; A... A F,) = G is valid. Hence,
the objective of an ATP system is to determine if a given formula F is valid (with respect
to a specific logic); in this case the ATP system usually also outputs a proof of F. A
formula F is valid if and only if it evaluates to true for all possible interpretation of its
function and predicate symbols.

formula F ATP system | F is valid (proof)

(problem) | (“prover”) | \,

F is not valid (counter model)
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For example, if we know that Plato is a man, and all men are mortal, then, as a logical
consequence, Plato is mortal. In the language of first-order logic this is represented by
the following formula

(man (Plato) N VX (man(X) = mortal (X)) ) = mortal (Plato) .

A formal description of the proof search algorithm is usually specified in form of
a (proof) calculus consisting of axioms and rules. Many different proof calculi exist,
most notable the resolution calculus [15], which was specifically developed with the
automation on computers in mind. The main rule of this calculus takes two clauses
of the input formula and derives a new clause, which is added to the input clauses.
Another popular approach are instance-based methods [8], which iteratively generate
ground instances of first-order clauses and then use a solver for propositional logic. While
both of these approaches have successfully been implemented, their main disadvantage is
that they generate thousands or even millions of new clauses during the proof search.
Hence, ATP systems based on these calculi usually need large amounts of memory.

This paper presents an approach for automating logical reasoning that does not have
this disadvantage. It is based on the connection calculus and implemented within a few
lines of Prolog code. As a proof-of-concept and to show the low memory requirements,
the ATP system is adapted to run on an iPod Nano, a compact, portable media player.

The paper is organized as follows. Section 2 introduces some basic concepts of first-
order logic and the connection calculus for classical first-order logic. Section 3 presents a
very compact Prolog implementation of this calculus. Section 4 describes the installation
of the prover on an iPod Nano and Section 5 presents some examples that show the
reasoning capabilities of the presented reasoning tool and an analysis of the memory
usage. Section 6 concludes with a summary and a brief outlook on further research.

2 Connection-based Reasoning

The implementation of the reasoning tool, i.e., of the ATP system presented later on is
based on the connection calculus. Such a (proof) calculus provides a formal description of
a method to determine the validity of a given first-order formula. The (clausal) connection
calculus requires the input formula to be in a clausal or matrix representation.

First-Order Logic

The standard language of (classical) first-order logic is used for representing the given
input formulae, see, e.g., [1, 20]. The letter X is used to denote variables, and terms are
built from functions, constants and variables.

An atomic formula, denoted by A, is built from predicate symbols and terms. The
connectives =, A, V and = denote negation, conjunction, disjunction and implication,
respectively. A (first-order) formula, denoted by F consists of atomic formulae, the
connectives and the existential and universal quantifiers 3 and V. For example,

(man (Plato) N VX (man(X) = mortal (X)) ) = mortal (Plato) (1

is a first-order formula.
A literal is an atomic formula or a negated atomic formula, i.e. it has the form A or
—A. The complement L of aliteral L is A if L is of the form —A, and —L otherwise.



Matrix Representation

The matrix representation is used for first-order formulae in clausal form. A clause C has
the form (Ly AL, A...ALy), where each L; is a literal. A formula in (disjunctive) clausal
form has the form 3x;...3x, (C; V...V C,), where each C; is a clause.! For example,
formula (1) has the equivalent clausal form

3X (—man (Plato) V (man (X) A —~mortal (X)) \V mortal (Plato)) . 2)

For classical (first-order) logic, every formula F' can be translated into an equivalent
formula F’ in clausal form, such that F is valid iff (if and only if) F’ is valid. A set
of clauses is represented as a matrix. A matrix of a formula consists of its clauses
{C1,...,C,}, in which each clause is a set of its literals {Ly,...,Ly}. A polarity 0
or 1 is used to represent negation in a matrix, i.e. literals of the form A and —A are
represented by A? and A!, respectively, In the graphical representation of a matrix, its
clauses are arranged horizontally, while the literals of each clause are arranged vertically.
For example, the matrix of formula (2) is

M = {{man (Plato)'}, {man (X )°,mortal (X)'}, {mortal (Plato)’}} 3)
which has the graphical representation

man (X )°

[ man (Plato)" | [ mortal (X)!

} [ mortal (Plato)’ ] . 4)

A connection is a set {A?, A'} of literals with the same predicate symbol but different
polarities. A term substitution ¢ assigns terms to variables that occur in the literals of
a given formula. A connection {L;,L,} with 6(L)=0(L,) is called 6-complementary.
For example, the connection {man (X )°, man (Plato )1} is a o-complementary connection,
if the variable X is substituted by Plato, i.e. for 6(X) = Plato.

A path through a matrix M ={Cy,...,C,} is a set of literals that contains one literal
from each clause C;€M, i.e. a set U™ {L!} with L/ €C;. For example, {man (Plato)',
man (X)°, mortal (Plato)®} and {man (Plato)', mortal (X)', mortal (Plato)’} are (the
only) paths through matrix (3) or its graphical representation (4).

According to the the matrix characterization, a formula F is valid iff there exists a
term substitution ¢ and a set of connections S, such that every path through the matrix M
of F contains a 6-complementary connection {L1,L,} € S; see [3] for details.

Connection Calculus

The connection calculus [2, 3], is a well-known basis to automate formal reasoning
in classical first-order logic. Proof search in the connection calculus is guided by
connections in order to calculate an appropriate set of connections S (according to the
matrix characterization).

In each step of a derivation in the connection calculus a connection is identified and
only paths that do not contain this connection are investigated afterwards. If every path
contains a o-complementary connection, the proof search succeeds and the given formula

'Even though the use of a (negated) conjunctive clausal form is very common, a disjunctive clausal form
is used for historical and practical reasons; the difference between both forms is marginal.
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Figure 1: The clausal connection calculus

is valid. A connection proof can be illustrated within the graphical matrix representation.
For example, the proof of matrix 3 consists of two steps, which identify two connections:

man (X)O

[ [ man(Plato)l } [ mortal(X)l

} [mortal(Plato)O] ] . &)

In contrast to sequent or (standard) tableau calculi, the connection-driven search
strategy permits a more goal-oriented proof search. This leads to a significantly smaller
search space and, thus, to a more efficient proof search. A connection corresponds to a
closed branch in the tableau calculus [6] or an axiom in the sequent calculus [5].

The formal description of the connection calculus is given in Fig. 1 and consists of
one axiom and three rules [13]. It works on tuples of the form “C, M, Path”, where M is a
matrix, C is the subgoal clause and Path is the active path; ¢ is a rigid term substitution.
A connection proof of a matrix M is a clausal connection proof of €, M, €. For example,

{},M, {mortal(Plato)O,man(X’)O} 4 {},M,{mortal(Plato)’} A
{man(x')°},{{man(Plato)"}, ...}, {mortal(Plato)’} O.M,{} A
{mortal(Plato)’},{{man(Plato)'}, {man(X)°,mortal(X)'}, {mortal(Plato)°}},{}
g, {{man(Plato)'}, {man(X )°,mortal(X)'}, {mortal(Plato)’}} &

is a (formal) connection proof of matrix (3) with the term substitution o (X’) = Plato (the
variable X’ occurs in the copy of the second clause).

Proof search in the clausal connection calculus is carried out by applying the rules of
the calculus in an analytic way, i.e. from bottom to top, starting with €, M, €, in which
M 1is the matrix of the given formula. At first, a start clause is selected. Afterwards,
connections are successively identified by applying reduction and extension rules, in order
to make sure that all paths through the matrix M contain a 6-complementary connection.
This process is guided by the active path, a subset of a path through M. During the
proof search, backtracking might be required when choosing the clause C; in the start and
extension rules or the literal L, in the reduction and extension rules, in case the chosen
rule or rule instance does not lead to a proof. The term substitution ¢ is calculated step
by step by one of the well-known ferm unification algorithms (see, e.g. [15]) whenever a
reduction or extension rule is applied.



3 The Prolog Implementation

leanCoP is a very compact Prolog implementation of the connection calculus described
in Sect. 2. leanCoP 1.0 essentially implements the basic connection calculus shown in
Fig. 1 [13]. leanCoP 2.0 integrates additional optimization techniques into the basic
connection calculus [10]. leanCoP 2.1 adds a proof output and a fixed strategy scheduling.
The source code of the leanCoP 2.1 core prover is shown in Fig. 2.

(a) prove(PathLim,Set,Proof) :-

(b) \+member (scut,Set) -> prove([-(#)],[],PathLim, [],Set, [Proof]) ;
(c) lit(#,C,_) -> prove(C,[-(#)],PathLim, [],Set,Proofl),

(d) Proof=[C|Proof1].

(e) prove(PathLim,Set,Proof) :-

(f) member (comp(Limit),Set), PathLim=Limit -> prove(l,[],Proof) ;
(g) (member (comp(_) ,Set) ;retract (pathlim)) ->

(h) PathLiml is PathLim+1, prove(PathLiml,Set,Proof).

(1) prove([l,_,_,_,_,[1).

(2) prove([Lit|Cla],Path,PathLim,Lem,Set,Proof) :-

( 3) Proof=[[[NegLit|Clal] |Proof1] |Proof2],

( 4) \+ (member(LitC, [Lit|Cla]), member(LitP,Path), LitC==LitP),
(5) (-NegLit=Lit;-Lit=NegLit) ->

( 6) ( member(LitL,Lem), Lit==LitL, Clal=[], Proofi=[]

(7) ;

(8 member (NegL ,Path), unify_with_occurs_check(NegL,NegLit),
(9) Clail=[], Proofi=[]

(10) H

(11) lit(NegLit,Clal,Grndl),

(12) ( Grndl=g -> true ; length(Path,K), K<PathLim -> true ;
(13) \+ pathlim -> assert(pathlim), fail ),

(14) prove(Clal, [Lit|Path] ,PathLim,Lem,Set,Proofl)

(15) ),

(16) ( member (cut,Set) -> ! ; true ),

(17) prove(Cla,Path,PathLim, [Lit|Lem] ,Set,Proof2).

Figure 2: The complete source code of the leanCoP 2.1 core prover

Prolog lists are used to represent sets, Prolog terms and variables are used to represent
atomic formulae and term variables, respectively; “-” is used to mark literals that have

9 (134

polarity 1. The logical connectives and quantifiers are expressed by “~” (negation), “,

(conjunction), “;” (disjunction), “=>" (implication), ex X: (existential quantifier), and
all X: (universal quantifier). For example, formula (1) is represented by the Prolog term

( man(plato) , all X: ( man(X) => mortal(X) ) ) => mortal(plato) .

In a preprocessing step, the input formula is translated into a matrix M and stored in
Prolog’s database in the following form. For every clause C € M and for all literals Le C
the fact “1it (L,C1,Grnd)” is stored, where C1=C\{L} and Grnd is g if C is ground (i.e.
does not contain any term variables) and n, otherwise. For example, the three clauses
(cl. 1-3) of matrix (3) are stored in the following form:

lit(-man (Plato),[1,g). (cL 1) lit(man (X), [-mortal (X)1,n). (cl 2)
lit (mortal (Plato),[1,g). (cl 3) lit (-mortal (X),[man (X)1,n). (cl 2)



This integrates the main advantage of the ”Prolog technology’ approach [21] into leanCoP
by using Prolog’s fast indexing mechanism to quickly find connections.

The core prover in Fig. 2 is invoked with prove(1,Set,Proof), where Set is a
strategy and the initial limit for the size of the active path is 1; see also [10]. The predicate
succeeds iff there is a connection proof for the matrix/clauses stored in Prolog’s database.
The proof search starts by applying the start rule (lines a—d). The path limit is used to
perform iterative deepening on the size of the active path (lines e-h), which is necessary
for completeness. Afterwards, reduction rule (lines 2-3,5,8-9,17) and extension rule
(lines 2-3,5,11-14,17) are repeatedly applied, until a branch in the derivation can be
closed by an axiom (line 1). The term substitution o is stored implicitly by Prolog.

Several proof search optimizations are integrated into the prover. positive start
clauses, regularity (line 4), lemmata (line 6), and restricted backtracking (line 16);
see [9, 10] for details. Furthermore, leanCoP 2.1 uses a fixed strategy scheduling, i.e.
a shell script invokes the Prolog core prover, consecutively, with different strategies.

The full source code of the prover, including the clausal form translation, are available
on the leanCoP website at http://www.leancop.de.

Other versions of leanCoP include implementations for first-order intuitionistic and
first-order modal logic. They are based on an adapted matrix characterization for non-
classical logics [23]; see [14] for an overview of these provers.

4 A Pocket Reasoning Tool

In order to show the modest hardware requirements of the leanCoP 2.1 prover presented
in Sect. 3, it has been ported and installed on an iPod Nano. See Table 1 for an overview.

Hardware

The (first-generation) iPod Nano is a very compact portable media/MP3 player that was
released in 2005. It measures only 40 mm x 90 mm x 6.9 mm (24.8 cm?) and weights
only 42 grams (see also Fig. 3). The iPod Nano uses a PortalPlayer PP5021C "system
on a chip" with dual embedded 80 MHz ARM 7TDMI processors (CPUs). The ARM
7TDMI is a 32-bit RISC CPU and one of the most widely used ARM cores, which can be
found in numerous embedded systems. It has 32 MB of random access memory (RAM),
but no Memory Management Unit (MMU), which is necessary to use and address virtual
memory. The storage capacity is between 1 GB and 4 GB of flash memory (the iPod
version used in the following has 2 GB). The iPod Nano has a small 1.5 inch (16-bit)
colour screen with a 176 x 132 resolution. Navigation is done by a small “click wheel”.

leancop21 _swipl

prove([LitICla] Path,PathLim,Lem,
Set,Proof] -

Proof=[[[MegLitiCla1]Proof IProof |
.
Y+ [memberd(LitC,ILtIClall,
membeilLitP,Path), LitC==L#

Figure 3: iPod Nano running pClinux and screenshot showing (part of) the leanCoP code



Software

In order to run the leanCoP prover on the iPod Nano, a Prolog implementation is installed,
which runs on the iPodLinux operating system. pClinux (or “uClinux”) is a derivative
of Linux intended for microcontrollers without Memory Management Unit (MMU).
iPodLinux is a uClinux-based Linux distribution designed specifically to run on the iPod,
including the first-generation iPod Nano.> When the iPodLinux kernel is booted, it runs
instead of the original iPod operating system and invokes Podzilla, an alternative graphical
user interface, allowing the user to interact with the device and launch other applications.

SWI-Prolog version 5.0.10 Lite is an efficient, portable ISO-standard Prolog.> The
SWI-Prolog runtime environment plrt was built using the gcc 3.4.3 cross compiler
of the ARM-uClinux tool chain. The SWI-Prolog start-up file plrt.prc is platform
independent and was built on an x86-Linux platform.

As the uClinux shell does not allow the execution of shell scripts, the prover has to
be invoked by an executable problem binary <problem-bin>. This file is a compiled C
source file that only contains a system call to load and run the Prolog runtime environment
and the leanCoP prover. The strategy scheduling realized within leanCoP’s shell script can
not be used anymore. The following files are required to run leanCoP on the iPod Nano:

* leancop2l_swi.pl (3.3 KB): the leanCoP core prover (see Fig. 2)

* def_mm.pl (7.2 KB): module for the translation into clausal form

* leancop_main.pl (2.9 KB): main module that invokes the different Prolog modules
* leancop_proof.pl (8.0 KB): translates returned proof into a readable form

* leancop_tptp2.pl (5.1 KB): translates the TPTP input syntax into leanCoP syntax
* <problem-bin> (4.8 KB): executable that calls the main Prolog module

e plrt (657.7 KB): the SWI-Prolog runtime environment

e plrt.prc (77.0 KB): the SWI-Prolog start-up file (containing Prolog libraries)

Overall, the files have a size of 766 KB. From the total available RAM of 24 MB (after
booting and starting podzilla), SWI-Prolog and leanCoP need only about 1 MB when
loaded and several MBs when the prover is invoked (see also Sect. 5). Whereas provers
based on resolution or instance-based calculi need to store many of inferred new clauses
in memory, leanCoP needs to store only the following data: (a) the given matrix/clauses
(see Sect. 3), (b) the subgoal clause C and the active path Path (see Sect. 2), and (c) the
stack required by SWI-Prolog for the recursive calls of the prove predicate.

Hardware: Software:
* iPod Nano (first generation) e uClinux: small Linux for embedded
* Dimensions: 40 x 90 x 6.9mm; 42 grams systems (without MMU)

* PortalPlayer PP5021C ("systemonachip") ¢ SWI-Prolog 5.0.10 Lite: efficient,
e CPU: dual embedded 80 MHz ARM portable ISO-standard Prolog; built by

7TDMLI, 32-bit RISC using gcc ARM cross-compiler
« RAM: 32 MB, no memory management * leanCoP 2.1 prover (with proof output,
Unit (MMU) but without strategy scheduling)

Table 1: Technical details of the pocket reasoning tool

Zhttp://www.ipodlinux.org/; due to encrypted firmware, later iPod Nano generations are not supported.
3http://www.swi-prolog.org/; about a dozen different Prolog implementations were considered for
running on the iPod Nano; only SWI-Prolog showed a stable and good performance.



5 Practical Evaluation

The following two examples, a logical puzzle and a theorem of mathematical set theory,
show how the pocket reasoner presented in Sect. 4 can be used to automate formal
reasoning. An analysis of the memory usage is presented as well.

Example 1: Who Killed Aunt Agatha?

Consider the following puzzle:

(1) Someone who lives in Dreadbury Mansion killed Aunt Agatha. (2—4) Agatha, the
butler, and Charles live in Dreadbury Mansion, (5) and are the only people who live
therein. (6) A killer always hates his victim, (7) and is never richer than his victim.
(8) Charles hates no one that Aunt Agatha hates. (9) Agatha hates everyone except
the butler. (10) The butler hates everyone not richer than Aunt Agatha. (11) The
butler hates everyone Aunt Agatha hates. (12) No one hates everyone. (13) Agatha
is not the butler. (14) Therefore: Did Agatha kill herself?

A formalization of this puzzle is given in problem file PUZ001+1 of the TPTP library [22]
and shown in Fig. 4. The (shortened) header contains file, domain and problem names,
the (known) status of the problem and its difficulty rating, expressed by a number between
0 (easy) and 1 (very difficult). E.g., the shown rating of 0.07 indicates that 0.07% of all
state-of-the-art provers are not able to solve this problem.

Lines 1-13 contain the axioms of the problem, line 14 contains the conjecture (the
numbering is added for convenience only). Each axiom or conjecture is represented
by a first-order formula in TPTP syntax, using the logical connectives ~ (negation),
& (conjunction), | (disjunction), => (implication), and the quantifiers 7 [X]: (3X) and
'[X]: (VX). The problem also contains equality (=) and inequality (!=); in this case
leanCoP automatically adds the necessary equality axioms.

Y
% File : PUZ001+1 : TPTP v6.4.0. Released v2.0.0.
% Domain : Puzzles

% Problem : Dreadbury Mansion
% Status : Theorem
% Rating : 0.07 v6.4.0, 0.12 v6.3.0, 0.04 v6.2.0, 0.12 v6.1.0, 0.20 v

) fof(pelb5_1,axiom, (7 [X]:( lives(X) & killed(X,agatha) ) )).

) fof(pelb5_2_1,axiom, ( lives(agatha) )).

) fof(pelb5_2_2,axiom, ( lives(butler) )).

) fof(pelb5_2_3,axiom, ( lives(charles) )).

) ! [X]:(1lives(X)=>(X=agatha|X=butler|X=charles)))).
! [X,Y]:( killed(X,Y) => hates(X,Y) ) )).

! [X,Y]:( killed(X,Y) => ~richer(X,Y) ) )).

! [X]:( hates(agatha,X) => ~hates(charles,X) ))).
(9) fof(pelb5_7,axiom, ! [X]:( X != butler => hates(agatha,X) ) )).

(10) fof(pelb5_8,axiom, ! [X]:( ~richer(X,agatha) => hates(butler,X) ).
(11) fof(pelb5_9,axiom, ! [X]:( hates(agatha,X) => hates(butler,X) ) .
(12) fof(pelb5_10,axiom, ( ! [X]: 7 [Y]: ~hates(X,Y) )).

(13) fof(pelb5_11,axiom, ( agatha != butler )).

(14) fof(pelb5,conjecture, ( killed(agatha,agatha) )).

fof (pelb5_3,axiom,
) fof(pelb5_4,axiom,
( 7) fof(pelb5_5,axiom,
(8 fof(pelb5_6,axiom,

AAAAAAAAAA

)
))

Figure 4: Formalization of “Who killed Aunt Agatha?”



1 Assume killed(agatha, agatha) is false.
Then clause (22) under the substitution [[_G654,_G655,_G656,_G6571, [1~[],
agatha,agatha,agatha]]
is false if at least one of the following is false:
[killed(1~[], agatha), 1~[]=agatha, agatha=agathal
1.1 Assume killed(1~[], agatha) is false.
Then clause (3) is true.
1.2 Assume 1~ []=agatha is false.
Then clause (7) under the substitution [[_G676], [1~[]1]]
is false if at least one of the following is false:
[lives(1~[1), -1~[]=butler, -1~[l=charles]
1.2.1 Assume lives(1~[]) is false.
Then clause (2) is true.
1.2.2 Assume -1"[]=butler is false.
Then clause (17) under the substitution [[_G594,_G593], [butler,1~[]1]]
is false if at least one of the following is false:
[-butler=1~[]]
[...]
1.3.3.1.2 Assume agatha=charles is false.
This is a contradiction to assumption 1.3.3.

Therefore there is no interpretation that makes all
given clauses simultaneously false. Hence the given
clauses are valid.

q.e.d.

Figure 5: Solution/proof for the “Who killed Aunt Agatha?” puzzle

It takes leanCoP on the iPod Nano about 14 seconds to output a solution/proof for this
problem. The proof consists of 46 proof steps (i.e. applications of start, reduction and
extension rules). The first five and the last steps are shown in Fig. 5; they closely follow
the structure of a connection proof. Terms starting with an underscore are variables; terms
of the form I~[] are skolemized variables introduced during the translation into clausal
form. These clauses are part of the proof output, but not shown Fig. 5. Screenshots of
(part of) the problem representation and the generated proof are shown in Fig. 6.

: puz001_1 [y puz001_1. proc [
FOpr'?E\?_1 LaRianm, 1 Assume killed(agatha, agatha)
X is false.
( lives(x) Then clause (22) under the

& killed(,agatha) ] JI. substitution [ GBSY, _GESS,

_GBSE, _GB57], [17(], agatha,
agatha, agathall
is false if ot least one of the

foflpelSS_2 1,axiom,
[ lives(agatha) J).

Figure 6: Problem file PUZ001+1 and its proof on the iPod Nano

Example 2: Intersection Distributes Over Union

Problem SET169+3 from the TPTP problem library states that, given three sets,
intersection distributes over union, i.e.

VBYCVD: BN(CUD)= (BNC)U(BND). 6)
The formalization of this theorem in TPTP syntax is presented in Fig. 7. Again, the

file starts with a header showing file, domain, and problem names, as well as status and

rating. The (current) rating of 0.60 indicates that this problem is not solved by 60% of the
state-of-the-art theorem provers.



% File : SET169+3 : TPTP v6.4.0. Released v2.2.0.
% Domain : Set Theory
% Problem : Intersection distributes over union
% Status : Theorem
% Rating : 0.60 v6.4.0, 0.62 v6.3.0, 0.67 v6.2.0, 0.68 v6.1.0, 0.73
Y .
( 1) fof(union_defn,axiom,
(2) [...]
( 3) fof(intersection_defn,axiom,
(4) ( ! [B,C’D]:
(5) ( member (D, intersection(B,C))<=>(member(D,B) & member(D,C)) ) )).
(6) [...]
( 7) fof(subset_defn,axiom,
(8) (! [B,C]: ( subset(B,C) <=>
(9) ! [D] : ( member(D,B) => member(D,C) ) ) )).
(10) [...]
(11) fof(prove_intersection_distributes_over_union,conjecture,
(12) (' [B,C,D]: intersection(B,union(C,D)) =
(13) union(intersection(B,C),intersection(B,D)) )).

Figure 7: Formalization of “Intersection distributes over union”

Three of the axioms and the conjecture are shown in Fig. 7. For example, the second
axiom (lines 3-5) states that D is an element of the intersection of B and C, if (and only if)
D is an element of B, and D is an element of C, 1.e. D€ BNC iff D€ B and D € C. Similar,
the “subset_defn” axiom (lines 7-9) expresses the fact that BCC iff VD : DeB = DeC.
The conjecture (lines 11-13) represents equation (6).

On the iPod Nano, leanCoP solves this problem in 105 seconds (on standard hardware,
leanCoP needs less than one second). The generated solution/proof consists of 38 proof
steps. At CASC, the yearly world championship for automatic theorem provers, this
problem was not solved by most of the provers including the two fastest theorem provers
(for classical first-order logic) within the given time limit of 5 minutes.*

Analysis of Memory Usage

Table 2 shows (peak) RAM usage on the 1644 first-order problems of the TPTP library
version 6.4.0 [22] that are proved by both, the core/iPod Nano prover of leanCoP 2.1 and
the E prover [19] within 10 seconds on servers with Xeon 2.3 GHz CPUs (running Linux
2.6.32 and SWI-Prolog 5.0.10 Lite). On problem SYN915+1, both provers use the least
amount of memory, on problem LCL490+1, E uses more than 60 times as much memory
as leanCoP. On average, the E prover, which is one of the most powerful provers available,
uses slightly more than twice the memory used by leanCoP.

memory / # problems ‘ leanCoP ‘ E ‘ leanCoP ‘ E
0— 2,499 kbytes 1421 0 average memory 2,240 4,899
2,500 — 9,999 kbytes 215 | 1565 min. (SYN915+1) 1,588 2,800
10,000 — 49,999 kbytes 8 66 max. (LCL490+1) 1,932 | 120,636
50,000 — kbytes 0 13 prover size (binary) 744 3,266

Table 2: Analysis of memory usage (in kbytes)

4See http://www.tptp.org/CASC/J6/; the Linux servers used in the competition were significantly more
powerful than the iPod Nano, i.e., quad-core servers with 2.40 GHz CPUs and 48 GB of RAM.



6 Conclusion

Automated theorem proving is a key technology for automating formal reasoning. Over
the last decades, the power of automatic theorem provers has improved significantly and
they are used in industrial applications, such as the development of provably correct
software. Most of the state-of-the-art provers are large and complex implementations and
comprise ten thousands of lines of code, making these systems inflexible and difficult to
maintain. More important, these provers are based on proof calculi that can generate
thousands of new clauses during the proof search and, thus, require large amounts
of memory. In contrast, connection calculi use significantly less memory and can be
implemented in a compact and elegant way.

This paper presents a proof-of-concept that automatic reasoning techniques can run
on small devices with very limited hardware resources. It uses a slightly adapted version
of the leanCoP prover, a compact Prolog implementation of the connection calculus for
first-order logic. The installation and evaluation of the prover on an iPod Nano shows
that such an automatic reasoning tool can (on certain problems, see Sect. 5) outperform
significantly more complex theorem provers running on much more powerful hardware.

Even though today’s mobile devices have significant more memory and more powerful
processors, up to the author’s knowledge, no other first-order logic reasoning tool has
been implemented on such a small mobile device so far. Just as the pocket calculator has
automated the calculation in arithmetic on small portable devices, a pocket reasoner can
automate logical reasoning on the move. Once, such a portable reasoning tool is powerful
enough, it could help people to make logical decisions in everyday life.’> Hence, future
work include the porting of the presented reasoning tool to more powerful mobile devices
and platforms.

Due to the compactness of the prover, it can easily be adapted to other logics and
applications, such as non-classical logics [14]. Furthermore, the correctness of the code
of the core prover can be checked much more easily.

Future work also includes adapting non-clausal reasoning approaches to small
portable devices. For example, the non-clausal connection calculus is a generalization
of the clausal connection calculus that does not require a translation into clausal form, but
works directly on the structure of the input formula. Hence, the non-clausal connection
calculus combines the advantages of more natural (non-clausal) sequent or tableau calculi
with the efficient goal-oriented search of connection calculi. The compact nanoCoP
implementation of this calculus does not only return more natural non-clausal proofs,
but these proofs are also significantly shorter than the clausal proofs [11, 12].
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