
Baseline Requirements for Comparative Research on
Cross-Platform Mobile Development: A Literature Survey

Andreas Biørn-Hansen1, Tor-Morten Grønli1 and Gheorghita Ghinea2

1 Mobile Technology Lab, Faculty of Technology, Westerdals Oslo ACT, Oslo, Norway

2 Department of Computer Science Brunel University, Uxbridge, United Kingdom

Abstract
Technical implementations are common in computing research to objectively assess

hypotheses. In mobile computing, and more specifically within research on cross-platform
mobile development, such implementations are usually in the form of mobile apps. Due to
the lack of a common ground for research on app development, studies tend to lack depth
and miss out on possible contributions. In an attempt to better the situation, we propose
a technical baseline for future research on cross-platform app development to draw from
based on previous studies’ technical implementations. We assess and scrutinize existing
literature to find trends, and use the generated knowledge to lay out the baseline proposal.

1 Introduction
Cross-platform mobile development is a popular alternative to the traditional native
development approach, according to Viennot et al. [1] and Ali and Mesbah [2].
While cross-platform development tend to differ greatly from native development [3],
the common goal is to produce applications for mobile devices. The native approach
requires specialized platform knowledge, as each platform (e.g. Android, iOS and
Windows Phone) introduce their own separate programming language, design guidelines,
programming interfaces, development environments and more [4]. Thus, developing an
app for each aforementioned platform would effectively require proficiency in Java, Swift
/ Objective-C and C# [5], as well as deep understanding of the Apple Human Interface
Guidelines, Android’s Material Design and Microsoft’s Modern UI [4].

Due to severe platform heterogeneity, as reported by Grønli et al. [6] and Escoffier
and Lalanda [7], developing apps targeting multiple platforms using the native approach
could be seen as inherently not feasible. Consequently, adoption of cross-platform mobile
development frameworks has been noted [2]. According to Majchrzak et al. [8], such
frameworks allow for a single codebase to be deployed to a variety of platforms, with only
smaller platform-specific modifications depending on approach and framework. Platform
heterogeneity is often handled by the framework, rendering user interface development
a one-time job in certain frameworks, as they determine which interface components to
render based on the device type and platform on which the app is executed (e.g. 1).

Cross-platform development has been the target of academic interest since its
inception in 2009-2010, with Charland and LeRoux [9] conducting one of the more initial

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.
1https://ionicframework.com/docs/components/



studies. Due to early and ongoing academic interest, we have been able to identify a
well-established body of knowledge for cross-platform mobile development. Research
on the subject includes a wide variety of topics, including such as technical performance
studies (e.g. [5]), Human-Computer Interaction (HCI) studies on quality perception and
user experience (e.g. [4]), proposed requirements for future development efforts (e.g.
[10]), and introductions of novel development approaches (e.g. [11]). Overall, technical
implementations are frequently included to provide data and evaluate hypotheses.

Technical artifacts are in fact frequently used in computing and software engineering
literature to support claims and provide evidence, also outside of the mobile computing
context. Its importance is backed by renowned computer scientist Niklaus Wirth, "The
art of designing artifacts to solve intricate problems is the ultimate goal of an academic
institution in the field of computing and programming" [12, p. 2]. Thus, while
traversing the literature, we identified the lack of a standardized baseline for technical
research implementations as a gap to target. Throughout our paper, we explore technical
implementations used in existing research on cross-platform mobile app development.
We do so in order to identify and answer the following,

• RQ1: Which platforms, mobile devices and development approaches are com-
monly included in cross-platform research evaluating technical implementations
(apps);

• RQ2: Which device feature APIs are commonly included in evaluations and
comparisons in such research.

Based on existing literature, we propose a technical baseline for future research
to draw from. We have extracted core details from 14 papers, and use those as
the foundation for our proposal. Constructing such a baseline proposal can be of a
certain complexity, as cross-platform mobile app development is more a hypernym
than a specific technology. Within this term, we find different technical approaches
and associated frameworks for architecting and conducting app development (e.g.
[8, 13, 14, 15, 16]). Established taxonomy for cross-platform development typically
mentions five overarching development approaches to dominate the field (e.g. [3, 17])
which include Hybrid, Interpreted, Cross-Compiled, Model-Driven and Component-
Based development. We encourage interested researchers to read such as Heitkötter
et al.’s [3] seminal paper, and El-Kassas et al.’s [17] taxonomy study to gain in-depth
understanding of the approaches.

For the sake of clarity, we briefly introduce each approach. The Hybrid approach
works by having a mobile-friendly website deployed together with a native app’s
codebase. By implementing an embedded web browser (WebView) into the native app,
the website can be rendered to the screen using the browser widget. Because a native
app is the foundation of any Hybrid app, submitting to the different App Stores works as
expected.

The Interpreted approach depends on an on-device interpreter to interpret the app’s
codebase which in turn renders native user interfaces. Thus, the approach differs greatly
from the Hybrid approach which renders web-based interfaces. Nevertheless, a native app
is also the foundation of any Interpreted app, and the JavaScript codebase is deployed as
part of the native app’s codebase for this approach as well.

The Cross-Compiled approach does not depend on interpreters or embeddable
browsers, as it compiles platform-specific binaries from a single codebase. Thus, using a
common programming language, native apps for targeted platforms are generated.



The Model-Driven and Component-Based approaches are less adopted by practition-
ers than the previous approaches, but do generate interest amongst academics according
to Umuhoza and Brambilla [18]. In these approaches, native apps are generated based on
models and specifications rather than web technologies.

The rest of this paper is structured as follows. Section 2 describes the literature
search and selection process, and includes an assessment and review of related work. Our
findings are presented in Section 3, and are further elaborated upon during the discussion
in Section 4. The baseline is presented throughout Section 5, and we end the paper with a
conclusion in Section 6.

2 Literature Search and Selection
To target studies evaluating and drawing from technical implementations, the literature
search has been condensed to primarily include papers embracing a design and creation
type of methodology, focusing on artifact development and evaluation. We conducted
the literature search using IEEE Xplore, Science Direct, ACM DigitalLibrary and
Google Scholar. Our search queries were comprised of the following terms: {Cross-
platform development, Cross-platform mobile development, Hybrid app development,
multi-platform mobile development}. Of 50 papers identified as interesting in our context,
a total of 14 papers included one or more technical implementations as part of their
research effort, thus were assumed directly relevant for review. The remaining papers
were to a large extent of a descriptive nature.

Related Work
Do note that no baseline or contribution similar to what we propose has been identified,
or even exist to the best of our knowledge. We identified the knowledge gap through
numerous extensive previous literature reviews, and found that we could contribute with
a more standardized specification for future research to draw from. Consequently, in this
section we rather present in short the state of research on cross-platform development.
Further assessment of the 14 identified studies is presented in Table 2.

The majority of technical research on cross-platform fits within three categories,
Performance studies, HCI and UX studies and Framework Comparison studies. Our
baseline as presented in Section 5 is thus based on these. The fundamental papers on
cross-platform tend to be framework comparison studies, including such as Heitkötter
et al. [3] and Corral et al. [19], mapping approaches and frameworks to requirements
and important factors. Also newer research focus on framework-level differences, such
as Majchrzak et al. [8], but do tend to draw more from technical assessments, thus help
validate the need for this very article.

We have also identified a newfound research interest of analyzing data from the app
stores. Such studies help form the foundation of technical baselines. For instance, Ali and
Mesbah [2] answer questions such as the prevalence of Hybrid apps in the App Stores by
traversing the code of 1.1 million apps, finding the PhoneGap framework to be highly
popular – thus its inclusion in our baseline. Alternatively, Mercado et al. [20] analyze the
language of more than 780,000 app reviews. Their contribution is of immense value and
helps to better understand users’ perception of cross-platform apps on a massive scale.

We will further elaborate on related work by presenting them organized and
categorized as a main part of our findings. The next section will take the tour through
platforms, approaches, devices, features and perceived complexity.



3 Findings
Our findings have been condensed into the two tables presented below. The order of
papers listed in the tables is random, however both tables are ordered identically.

Platforms, Approaches and Devices
Certain abbreviations are used, including WP (Windows Phone), PG (PhoneGap), jQM
(jQuery Mobile), ST (Sencha Touch), IAF (Intel App Framework) and RN (React Native).

Table 1: Overview of platforms, approaches and devices

Paper Approaches (Frameworks) Devices (Platform)
[21] Native

Hybrid (PG)
Sony Xperia Z3 (Android)
Nokia Lumia 625 (WP)

[8] Hybrid (Ionic)
Interpreted (RN, Fuse)

Nexus 5X (Android)

[22] Web app
Hybrid (PG)
Interpreted (Titanium)
Cross-compiled (MoSync)

Samsung i9250 (Android)
Samsung Galaxy S5 (Android)
Apple iPhone 4, 5 (iOS)

[5] Native
Hybrid (PG)
Cross-compiled (Xamarin)

Apple iPhone 4, 6 (iOS)
Acer Liquid E330 (Android)
Nexus 6 (Android)

[15] Hybrid (PG, ST 2, jQM)
Interpreted (Titanium)

Archos Tablet (Android)

[23] Web app (jQM)
Hybrid (PG)
Cross-compiled (MoSync)
Interpreted (Titanium)

N/A

[24] Native
Web app
Hybrid (PG)

Samsung GTI-5500 (Android)
Apple iPhone 4 (iOS)
HTC Desire HD (Android)

[25] Java2Csharp by Eclipse
Java2C# by Tangible

WP emulator

[26] Native
Hybrid (PG)

HTC Nexus One (Android)
HTC Magic (Android)

[27] JIL Sony Ericsson Xperia (Android)
[28] Hybrid (PG, ST, jQM)

Interpreted (Titanium)
Cross-compiled (Xamarin)
Delphi XE6

Simulators

[14] Native
Hybrid (PG + jQM)

Galaxy Nexus (Android)
Nexus 5 (Android)

[29] Hybrid (Ionic, ST 2, jQM, IAF,
MGWT, Famou.us)
Interpreted (Titanium, Adobe AIR)
Cross-compiled (Xamarin, NeoMAD)

Apple iPhone 4, 6 (iOS)
Sony Xperia E3 (Android)
Nexus 6 (Android)
Nokia Lumia 925 (WP)

[4] Native
Titanium

Longitudinal user study,
variety of undisclosed devices.



Features and Perceived Complexity

Table 2: Overview of features and perceived complexity

Paper Features Review of Technical Artifact and Study
[21] User Interface

App Navigation
Network Request

Few features included. Artifact is used for quantitative
performance measurements, but lack features to properly
do so. Authors subjectively discussing the user experi-
ence and appearance of the apps. Interesting results to
draw from and further empirically evaluate in future re-
search.

[8] User Interface
App Navigation
Camera
Image Gallery
GPS
Contact List
Network Request

Features chosen in cooperation with industry partner. Au-
thors assess different aspects of app development draw-
ing from implementations using technical frameworks of
different cross-platform approaches. Future work would
include performance testing the feature-rich implementa-
tions.

[22] Camera
GPS
Media Access
Light Sensor
Proximity Sensor
Compass

Extensive study including feature-rich apps of different
approaches, used to performance test and evaluate
differences in hardware utilization and optimization.
Research methods should be of interest for future
research. We find the overall study to be of great interest
and contribution to the field.

[5] App Navigation Only one feature included. App navigation used to
measure navigation load time. Otherwise an interesting
study focusing on measuring CPU, memory and disk
space. The lack of features assessed renders the study
less comprehensive than its potential.

[15] Network Request Provides a set of decision factors and subjective claims.
Simple implementation. Tested on only one device, an
Archos tablet. Measurement of memory using interesting
metrics, CPU and power consumption. Methods can be
of future interest.

[23] User Interface
Game Mechanics

Authors merely scratch the surface of studying anima-
tions. Focuses on animation API support rather than CPU
and battery usage. No mention of Frames-per-Second
measurement. Unknown implementation complexity, but
is classified by the authors as a "serious game" [23, p. 1].

[24] Camera
Network Request

Scoring a cross-platform app on a variety of factors, al-
beit with little empirical evidence. Technical implemen-
tation looks non-complex, with complex calculations for
image recognition being offloaded onto a backend server
through a network request.



[25] User Interface Results of source-code translation are promising, as
their game implementation was successfully translated
between the languages. However, this approach requires
separate implementations of user interfaces. Also,
the implementation is rather non-complex, but further
work includes applying the approach to more complex
products.

[26] User Interface
File I/O
Accelerometer
GPS
Contact List
Media Access
Light Sensor
Network Request

The technical artifact provides a simple user interface to
interact with built-in benchmarking functionality. This
approach is interesting in the context of this study being
a performance analysis. They include a lengthy array of
features, and provide a comparison between a native app
and a cross-platform PhoneGap app executing different
tasks using the features. This includes measurements
such as response time for GPS location requests, file I/O
reading and writing and device contact list access.

[27] User Interface
File I/O
GPS
Media Access

Study evaluates a technical artifact incorporating coop-
erative game design elements, allowing users to leverage
their device’s GPS. App features an especially simple user
interface. They list certain approach limitations, but the
study could have been further extended through e.g. per-
formance testing the JIL approach.

[28] User Interface
App Navigation
Network Request

Authors present a review of development approaches,
their case study and technical implementations. Study
includes three apps to compare frameworks, done mostly
from a technical perspective. Artifacts feature simple user
interfaces and navigation patterns, without extensive use
of device features. Interesting albeit minimal study.

[14] User Interface
Network Request

Rather simple technical implementation, but it proves the
authors’ points nonetheless. They provide a comparison
between a native app, hybrid app and a WebView app
(a term unknown to common domain taxonomy) using
Frames per Second as their main performance metrics.
Results are interesting for future research to draw from,
especially in an HCI context.

[29] User Interface
App Navigation
Network Request

Comprehensive study including evaluations of an open
source framework-comparison suite. The blend of open
source and academia allows for software developed by
practitioners to be properly assessed within the rigorous
foundation of academic research. Overall a study to draw
from in future work.

[4] App Navigation Highly interesting contribution to the field. Authors
present thorough laboratory and longitudinal studies
focusing on user perception of cross-platform (versus
native) apps. It is one of few studies of its sort.
Technical implementation is seemingly complex, albeit
containing relatively few device features, it contains
enough functionality for regular user engagement.



4 Discussion
Platforms, Devices and Development Approaches
Android was included in 11 studies, making it the most popular platform for conducting
research. IOS occurred in six studies, and Windows Phone in four studies. The difference
between iOS and Windows Phone occurrence is interesting, as Apple greatly outperforms
Microsoft on sales and available apps, according to Statista [30].

Test devices range from cheap low-end phones up to the market-leading ones. We find
it less important to give exact device recommendations due to the nature of such devices,
but our baseline nevertheless includes a valid overview.

We found that the Native, Hybrid, Interpreted and Cross-Compiled approaches are all
commonly included in technical studies. Within each approach, associated frameworks
were identified. PhoneGap, either standalone or together with Sencha Touch or jQuery
Mobile, was the most-used Hybrid development framework, occurring in nine studies.
The Ionic framework, also of the Hybrid approach, was included in two studies.

It might enjoy more presence in future research due to its increasing popularity2. For
the Interpreted approach, Appcelerator’s Titanium framework was included in six studies,
making it the most popular framework in identified research. Also, React Native, Fuse
and Adobe AIR had presence although limited, only occurring once each. While Titanium
has been the most popular Interpreted solution in previous research, the React Native
framework has seen a massive increase in developer popularity in comparison, e.g. using
the Github star count: 2242 for Titanium3 vs. 52333 for React Native4 (August 2017). We
advise academia to make a change of direction in terms of frameworks to keep research
relevant also amongst practitioners.

Majchrzak et al. claimed that "[...] Approaches that originate in the scientific
community and are theoretically sound [...] are not easily adopted by industry [...]"
[8, p. 1] Such approaches include Model-Driven and Component-Based development.
However, the lack of inclusion of such approaches in the identified literature could suggest
that also the scientific community avoid them in studies including technical evaluations.
One reason for this could be the lack of a standard modeling language for mobile
development using e.g. Model-Driven Development, as further discussed by Umuhoza
and Brambilla [18].

Features and Platform APIs
Our second focus was the investigation of features and the platform APIs. There is a
great variety of device features available through the different mobile platforms’ Software
Development Kits (SDK) (e.g. [31]). We found that in our pool of identified research,
inclusion of different features depended on the type of study. For example, the inclusion
of navigation between pages in Willocx et al.’s study [5] made it possible to measure
and compare navigation- and page load time. The study focused on performance testing
different aspects of cross-platform developed apps, such as launch time and hardware
utilization. However, in terms of the study’s extensiveness, it could be deemed less
comprehensive than such as Ciman and Gaggi’s performance experiment [22], including
numerous features and sensors. Had Willocx et al. [5] included a wider array of
features, the two studies and their results could be compared, proving or disproving their

2https://npm-stat.com/charts.html?package=ionic&from=2015-01-01&to=2017-11-06
3https://github.com/appcelerator/titanium_mobile
4https://github.com/facebook/react-native

https://npm-stat.com/charts.html?package=ionic&from=2015-01-01&to=2017-11-06


hypotheses and suggestions. Nevertheless, they each provide important contributions.
For other types of studies, such as those relating to topics within HCI and User

eXperience (UX), the inclusion of user interfaces dominates (e.g. [4, 14, 23]). Issues
related to user interfaces are typically raised in studies on cross-platform apps regardless
of overarching topic (e.g. [3, 15, 21, 25]). In fact, the look and feel of apps are issues
included in studies on requirements for cross-platform frameworks and tools, according
to Gaouar et al. [10].

Certain features are considerably more common in research than others. The use of
network requests occurs in eight studies, which according to Majchrzak et al. [8] is a
feature typically found also in business apps for consuming data from backend APIs. The
camera feature is included in three studies, and the purpose of the inclusion varies from
comparing implementation complexity ([8]) to measuring device performance such as
battery and memory usage ([22]). The same is typically true for GPS access and similar
sensors, including light, proximity and compass. As the camera is a common feature
included in any type of app, being business ([8]) or social (e.g. Snapchat, Instagram,
Facebook), we acknowledge the importance of including it in studies on performance
and framework comparisons. We also find inclusion of GPS to be of importance in such
studies.

Some papers, such as a study by Biørn-Hansen et al. [16], compare frameworks on
feature implementation complexity and availability. The contribution of such papers could
be said to increase in a linear fashion for each new feature added to the comparison. As an
example, Willocx et al.’s [5] study contributed with interesting insights on cross-platform
performance, but its validity and usage for decision making would have been even greater
with the inclusion of more features.

5 Proposed Baseline
Approaches and Frameworks
We suggest the following approaches and associated frameworks to be included in future
research. The suggestions are a mix of technologies found in the traversed literature as
well as up and coming and popular technologies typically discussed by practitioners. We
do this in an attempt to push fellow researchers away from deprecated, yet commonly
included frameworks (such as MoSync), and instead focus on frameworks receiving
attention in developer communities.

• Hybrid: PhoneGap and Ionic Framework. Consider Sencha Touch, Quasar
Framework, Onsen UI and RhoMobile (Rhodes). Avoid Intel App Framework due
to discontinuation.

• Interpreted: Titanium Appcelerator and React Native. Consider NativeScript,
Weex and Fuse. Consider Tabris.js as a commercial closed-source solution.

• Cross-compiled: Xamarin. Consider NeoMAD as a commercial closed-source
solution. Avoid MoSync due to discontinuation.

We suggest to consider including the Model-Driven and Component-Based devel-
opment approaches in studies that could benefit from such, however as previously ex-
plored, these approaches are typically not adopted by the industry to the same extent as
in academia [8]. We also suggest adventurous researchers to consider inclusion of the
Progressive Web Apps approach as discussed by Biørn-Hansen et al. [16].



Devices and Operating Systems
In Table 1 we find that all the major operating systems are included; Android, iOS and
Windows Phone (Windows 10 Mobile) are used regardless of type of study. Both real
devices and simulators/emulators are commonly used. To optimize research for validity
in real-world contexts, we suggest the use of a wide range of devices. Thus, while research
labs might be equipped with state of the art equipment, performing tests using lower-end
devices should be deemed of utmost importance for validity in emerging markets. We
suggest including an array of devices such as (as per 2017)

• iPhone (iOS): An older device such as iPhone 4, and a top-range such as iPhone 7.

• Android: A low-range device such as the HTC Desire HD or an older Nexus phone,
a medium-range device such as the Nexus 5 or Motorola Moto G3/G5, and a top-
range such as the Google Pixel or Samsung S8.

• Windows Phone: While their marketshare is minimal, inclusion of Windows Phone
devices would only increase the level of contribution and the study’s validity. We
suggest testing on a low-range device such as the Nokia Lumia 550 or 625, a
medium-range device such as the Nokia Lumia 650 and a top-range device such
as the Nokia Lumia 925 or 950 (XL).

The inclusion of a wider range of devices and operating systems will inherently lead to
a contribution with more validity and purpose for decision making and research. Thus,
practitioners and researchers alike should also consider testing on more than just one
device within each range category.

Features
We find that features included typically depend on the type of study. Based on our findings
from Table 2, we suggest features deemed important for three types or categories of
studies:

• Performance studies: A wide range of sensors, such as proximity, light,
accelerometer and GPS. Inclusion of file I/O access measurement and camera
battery drainage, CPU and memory usage. For user-oriented performance studies,
include such as animations ([4, 23]) and interactive elements and measure Frames-
per-Second (should be as close to 60 as possible). Measure navigation time ([5]).

• HCI and UX studies: User interfaces following the platforms’ design guidelines.
Inclusion of app navigation and navigation patterns. Implementation of interactive
interface elements. Inclusion of device features would depend on the type of app
being user tested and evaluated.

• Framework comparison studies: The more features included, the more
comprehensive the study and its contributions are. We suggest, as a minimal
baseline, to include app navigation, camera and GPS access, and native feature
access through bridges or similar. To extend, include also different sensors as
mentioned above.



6 Conclusion and Further Work
Due to differences between categories of studies, no single baseline could fit all types of
applied cross-platform research. Thus, in the Features subsection we outlined baselines
for performance studies, HCI and UX studies, and framework comparison studies. For the
approaches, frameworks and devices, we find that our suggestions are of high relevance
regardless of category or type of study. It is evident, and inherently so, that approaches and
frameworks will over time deprecate and be replaced by newer technologies. The same is
most certainly true also for the availability and support of device features. However, the
validity and future-proofing of our contribution lies in the outlined baseline, where newer
technologies could be mapped into the sections above.

The studies also varied greatly in perceived complexity. That goes for the papers
themselves, their contribution and the technical artifacts included. We acknowledge that
each paper contributes with valuable insight to the body of knowledge, but that an increase
in complexity of some could increase their contribution significantly.

References
[1] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google

play. In The 2014 ACM international conference on Measurement and modeling
of computer systems, volume 42, pages 221–233, New York, NY, USA, June 2014.
ACM.

[2] Mohamed Ali and Ali Mesbah. Mining and characterizing hybrid apps. In
Proceedings of the International Workshop on App Market Analytics, WAMA 2016,
pages 50–56, New York, NY, USA, 2016. ACM.

[3] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. Comparing cross-
platform development approaches for mobile applications. In Proceedings 8th
WEBIST, pages 299–311. SciTePress, April 2012.

[4] Esteban Angulo and Xavier Ferre. A case study on Cross-Platform development
frameworks for mobile applications and UX. In Proceedings of the XV International
Conference on Human Computer Interaction, page 27. ACM, 10 September 2014.

[5] Michiel Willocx, Jan Vossaert, and Vincent Naessens. A quantitative assessment of
performance in mobile app development tools. In Mobile Services (MS), 2015 IEEE
International Conference on, pages 454–461. IEEE, June 2015.

[6] Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muhammad Younas.
Mobile application platform heterogeneity: Android vs windows phone vs iOS vs
firefox OS. In 2014 IEEE 28th International Conference on Advanced Information
Networking and Applications, pages 635–641. IEEE, May 2014.

[7] Clément Escoffier and Philippe Lalanda. Managing the heterogeneity and dynamism
in hybrid mobile applications. In 2015 IEEE International Conference on Services
Computing, pages 74–81. IEEE, June 2015.

[8] Tim Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. Comprehensive
analysis of innovative Cross-Platform app development frameworks. In Proceedings
of the 50th Hawaii International Conference on System Sciences, pages 6162–6171.
scholarspace.manoa.hawaii.edu, 2017.



[9] Andre Charland and Brian LeRoux. Mobile application development: Web vs.
native. Queueing Syst., 9(4):20, 1 April 2011.

[10] Lamia Gaouar, Abdelkrim Benamar, and Fethi Tarik Bendimerad. Desirable
requirements of cross platform mobile development tools. Electronic Devices, 5:14–
22, March 2016.

[11] Henning Heitkötter, Tim A Majchrzak, and Herbert Kuchen. Cross-platform model-
driven development of mobile applications with md2. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, pages 526–533, New
York, NY, USA, 18 March 2013. ACM.

[12] Niklaus Wirth. Computing science education: the road not taken. SIGCSE Bull.,
34(3):1–3, 1 September 2002.

[13] Nader Boushehrinejadmoradi, Vinod Ganapathy, Santosh Nagarakatte, and Liviu
Iftode. Testing Cross-Platform mobile app development frameworks (t). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 441–451. IEEE, November 2015.

[14] Timothy Yudi Adinugroho, Reina, and Josef Bernadi Gautama. Review of multi-
platform mobile application development using WebView: Learning management
system on mobile platform. In Procedia Computer Science, volume 59, pages 291–
297. Elsevier, 2015.

[15] Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. Sur-
vey, comparison and evaluation of cross platform mobile application development
tools. In Wireless Communications and Mobile Computing Conference (IWCMC),
2013 9th International, pages 323–328. IEEE, July 2013.

[16] Andreas Biørn-Hansen, Tim A Majchrzak, and Tor-Morten Grønli. Progressive web
apps: The possible web-native unifier for mobile development. In Proceedings of
the 13th International Conference on Web Information Systems and Technologies,
pages 344–351. SCITEPRESS, April 2017.

[17] Wafaa S El-Kassas, Bassem A Abdullah, Ahmed H Yousef, and Ayman M Wahba.
Taxonomy of Cross-Platform mobile applications development approaches. Ain
Shams Engineering Journal, 8(2):163–190, 2017.

[18] Eric Umuhoza and Marco Brambilla. Model driven development approaches for
mobile applications: A survey. In Mobile Web and Intelligent Information Systems,
Lecture Notes in Computer Science, pages 93–107. Springer, Cham, 22 August
2016.

[19] Luis Corral, Andrea Janes, and Tadas Remencius. Potential advantages and
disadvantages of multiplatform development Frameworks–A vision on mobile
environments. In Procedia Computer Science, volume 10, pages 1202–1207.
SciVerse ScienceDirect, 9 August 2012.

[20] Iván Tactuk Mercado, Nuthan Munaiah, and Andrew Meneely. The impact of
cross-platform development approaches for mobile applications from the user’s
perspective. In Proceedings of the International Workshop on App Market Analytics,
WAMA 2016, pages 43–49, New York, NY, USA, 14 November 2016. ACM.



[21] Ville Ahti, Sami Hyrynsalmi, and Olli Nevalainen. An evaluation framework for
Cross-Platform mobile app development tools: A case analysis of adobe PhoneGap
framework. In Proceedings of the 17th International Conference on Computer
Systems and Technologies 2016, CompSysTech ’16, pages 41–48, New York, NY,
USA, 2016. ACM.

[22] Matteo Ciman and Ombretta Gaggi. An empirical analysis of energy consumption
of cross-platform frameworks for mobile development. Pervasive and Mobile
Computing, 26 October 2016.

[23] Matteo Ciman, Ombretta Gaggi, and Nicola Gonzo. Cross-platform mobile
development: a study on apps with animations. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pages 757–759. ACM, 24 March 2014.

[24] Ngu Phuc Huy and Do vanThanh. Evaluation of mobile app paradigms. In
Proceedings of the 10th International Conference on Advances in Mobile Computing
& Multimedia, pages 25–30. ACM, 3 December 2012.

[25] Parag Gokhale and Sachchidanand Singh. Multi-platform strategies, approaches and
challenges for developing mobile applications. In 2014 International Conference
on Circuits, Systems, Communication and Information Technology Applications
(CSCITA), pages 289–293, April 2014.

[26] Luis Corral, Alberto Sillitti, and Giancarlo Succi. Mobile multiplatform
development: An experiment for performance analysis. Procedia Comput. Sci.,
10:736–743, 1 January 2012.

[27] Carlos Duarte and Ana Paula Afonso. Developing once, deploying everywhere: A
case study using JIL. In Proceedings of the 8th International Conference on Mobile
Web Information Systems (MobiWIS 2011), Procedia Computer Science, pages 641–
644. ScienceDirect, 2011.

[28] Lisandro Delia, Nicolas Galdamez, Pablo Thomas, Leonardo Corbalan, and Patricia
Pesado. Multi-platform mobile application development analysis. In 2015 IEEE 9th
International Conference on Research Challenges in Information Science (RCIS),
pages 181–186, May 2015.

[29] Michiel Willocx, Jan Vossaert, and Vincent Naessens. Comparing performance
parameters of mobile app development strategies. In 2016 IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pages 38–
47. IEEE, May 2016.

[30] Statista. App stores: number of apps in leading app stores 2017. https://www.
statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/,
March 2017. Accessed: 2017-8-9.

[31] Sunny Dhillon and Qusay H Mahmoud. An evaluation framework for cross-
platform mobile application development tools. Softw. Pract. Exp., 45(10):1331–
1357, 1 October 2015.

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

	Introduction
	Literature Search and Selection
	Related Work

	Findings
	Platforms, Approaches and Devices
	Features and Perceived Complexity

	Discussion
	Platforms, Devices and Development Approaches
	Features and Platform APIs

	Proposed Baseline
	Approaches and Frameworks
	Devices and Operating Systems
	Features

	Conclusion and Further Work

