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Abstract
Software Product Lines (SPLs) are a mechanism for large-scale reuse
where families of related software systems are represented in terms of
commonalities and variabilities, e.g., using Feature Models (FMs). Context-
aware SPL have been proposed to model and deal with dynamic systems
whose behavior and properties depend on the context where they are deployed
and executed. Due to the novelty of approach, no existing benchmarks of
context-aware SPL are available.

In this paper we overcome this limitation by introducing CaSPL-gen,
i.e., the first benchmark generator tool able to generate random instances of
context-aware SPL.

1 Introduction
Software Product Lines (SPLs) are an approach for structured large-scale reuse where
families of related software systems are modeled in terms of commonalities and
variabilities [20]. The set of all possible configurations is represented by a variability
model, such as a Feature Model (FM) [12]. A FM structures features along a
decomposition hierarchy where individual features represent configurable units of
functionality, which may be enriched by additional feature attributes–variables with a
type defined within the context of a feature. A configuration is a valid subset of features
of a FM along with concrete values for the attributes of all selected features.

In the standard SPL approach, features are selected based on human desires only.
Nowadays, however, this may not be enough: with the diffusion of the Internet of
Things [2], a very large number of devices have to interact and adapt based on their
surrounding. As a consequence, contextual information needs to also be considered in the
configuration process. Usually, the development of such systems is performed by defining
a context model and rules to specify which configurations and parameters to use for every
interesting context [3, 6, 9, 14]. For example, considering the automotive industry, cars
may change their navigation software according to their position. If a car is in Russia,
instead of using as navigational system with the standard GPS, it may use the satellite
navigation system GLONASS. Additionally, a cruise control should have a parameter,
limiting the maximum selectable value based on the speed limit of the respective country.
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Clearly, for systems having a very large number of context or features, the number
of rules to write may increase drastically, which makes it very difficult (i) to list all the
rules and (ii) to ensure that a valid configuration exists for every possible context. To
mitigate this problem, different context extensions have been proposed within the SPL
field [1, 7, 11, 18]. Usually these approaches represent the contextual information with
additional data structures (e.g., trees, FM, ontologies) and relate the context with the
features using external or cross-tree constraints. All these approaches are fairly recent,
with a limited tool support for the analysis of the models, and no established benchmarks.

To support and foster the development of reasoners, configurators, and analyzers able
to handle context-aware SPL, in this work we introduce CaSPL-gen, the first benchmark
generator tool able to generate context-aware SPL. Among all the formalism for context-
aware SPL proposed, we target HyVarRec [14]. The reasons behind this choices are
twofold: i) HyVarRec formalism is one of the simplest context-aware extension since
contexts are not represented by a complex data structure like trees or ontologies but
are instead a name-value map, ii) HyVarRec is the only approach that comes with a
reasoner [15] able to handle the full additional complexity brought by the addition of
contexts.

The goal of CaSPL-gen is to allow the comparison of new tools both for functional
testing1 and for performance testing. CaSPL-gen will generate an extensive set of
benchmarks that can be used to compare the results and the performance w.r.t. the
HyVarRec reasoner [15]. Evaluating how the different tools run on the instances generated
by CaSPL-gen is, however, beyond the scope of this paper.

This paper is structured as follows: In Section 2, we explain the background
information needed to better understand context-aware SPL. In Section 3, we introduce
and describe CaSPL-gen. Finally, in Section 4, we give an overview of related works,
before drawing some concluding remarks.

The work presented here is based on the Master Thesis available at http://urn.nb.
no/URN:NBN:no-60166.

2 Background
In this section we give a brief overview of the standard Feature Models (FMs) and their
extension to capture contextual information.

Standard FM is a hierarchical representation of the variability of an SPL. A FM consist
of features representing configurable functionality of a system [12]. Each feature can
have several child features and a FM has exactly one root feature. As an example, Figure
1 exemplifies an instance of a FM for the SPL of a car manufacturer. In this case, the
root feature is Car while Emergency Call, Position Service are two of its children.
Features can be mandatory or optional and can be organized in alternative- or or-groups.
In alternative groups, exactly one feature has to be selected, whereas in or groups, at
least one feature has to be selected. For instance, in Figure 1, the feature Distance
Sensor is optional and the feature Emergency Call is mandatory and has its children
organized as an alternative group. Feature attributes are typed variables associated with a
feature and are used to express more fine-grained variability [4]. It is possible to specify
a domain for each attribute to limit its value range. For example, in Figure 1, the feature
Adaptive Cruise Control owns an attribute maxSpeed of type int that has the interval

1With functional testing we intended the checking of whether a program satisfies its functional
requirements, i.e. whether the program does what the user expects it to do.
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Figure 1: Example of context-aware FM for a car manufacturer SPL.

[0,300] as domain. In FMs, Cross Tree Constraints (CTC) are used to specify additional
dependencies between features which are not specified via the hierarchical structure of
the FM. CTCs can be defined as Boolean formulas on features and expressions on feature
attributes. A configuration of an FM is a set of selected features, feature versions and
values for the relevant feature attributes. A configuration is valid if it conforms with
the hierarchy of the FM and the CTCs. A FM is void if it does not allow any valid
configuration.

In [14, 19], an extension of standard FM was presented to capture contextual
information allowing to model the dependencies of the selected features or attributes
with respect to some external or environmental parameter. In the following we denote
with Context-aware Feature Models (CFMs) this extended version of FM. Contextual
information is captured with identifier-value pairs where a context is associated with
a value. For instance, in Figure 1, two contexts are defined: Road and Location to
represent the status of the road used by the car and the car location. The contextual
information is used to force the selection of features. This is done by enforcing so called
Validity Formulas (VF), i.e., propositional formulas associated with a feature that can
relate features and attributes with context values. For instance, in Figure 1, the feature
Ecall Europe has associated the VF Location = Europe that forces the feature to be
selectable only if the value of the context Location is Europe.

As a configuration of an SPL may be invalidated due to changed values for contextual
information and the violation of VFs, the product needs to be reconfigured. To do so
reconfigurators such as HyVarRec [14, 19] may be used.

3 CaSPL-gen
In this section we introduce the tool CaSPL-gen that we implemented for the generation
of random CFMs.

CaSPL-gen was developed to create a fixed number of CFMs that are restricted by
certain pre-defined parameters. Since CFMs are an extension of standard FM, instead
of generating CFMs from scratch we exploit an available benchmark generation tool for
standard FM. In particular, internally CaSPL-gen uses BeTTy [22], i.e., a Java framework
that supports the benchmarking and the analysis of FM. With BeTTy it is possible to



Name Description Default value Source
sizeDataSet # instances to generate 10 New

numberOfFeatures # of features 50 BeTTy
percentageCTC max % of CTCs relative to # of features 30 BeTTy

probMand Percentage of mandatory relationships Random BeTTy
probOpt Percentage of optional relationships Random BeTTy
probAlt Percentage of or-relationships Random BeTTy
probOr Percentage of alternative relationships Random BeTTy

maxBranchingFactor Maximum branching factor 10 BeTTy
maxSetChildren Maximum # of sub-features in sets 5 BeTTy

minAttrValue min value for attribute domain 0 New
maxAttrValue max value for attribute domain 100 New

contextMaxSize max # of contexts 10 New
contextMaxValue max domain size for context 10 New

maxPercentageVFs max % of VFs relative to # of features 20 New
simpleMode selects the simple execution modality false New

Table 1: CaSPL-gen settings. The last column distinguishes the parameters used internally
to call BeTTy from the new ones used only by CaSPL-gen.

create large numbers of FM, with or without attributes in a short amount of time. The
FMs generated by using Betty are then extended with VFs and contexts, finally exported
in the HyVarRec JSON format [14].

CaSPL-gen can be invoked by setting different parameters, summarized in Table 1.2

These parameters are used to define the size of the benchmark and the size of every CFM
to be generated. Several parameters affect the structure of the CFMs, in particular the
parameters that define the percentage of different relation types, the amount of CTC, and
the amount of mandatory features are shared with the BeTTy tool and used to generate
the basic FM structure.3 We remark that these settings have an impact on the complexity
of the final CFMs and on the running times of CaSPL-gen.

CaSPL-gen offers two execution modalities: a simple one that lets BeTTy do most of
the work, and a default one that tries to avoid the creation of CFMs that do not admit valid
configurations or that have a lot of dead features, i.e., features that due to the hierarchy
and the CTC can never be selected. Before discussing the default execution modality and
the usage of CaSPL-gen, we detail the simple execution modality.

Simple Execution Modality
The simple execution modality heavily relies on BeTTy for the generation of the
benchmarks and is intended to be used only for the generation of large FMs where the
additional checks performed in the default modality may take too long time.

The execution flow followed by CaSPL-gen to generate a CFM when executed in
the simple modality is depicted in Figure 2. First BeTTy is run, setting its parameters
according to the parameters given in input to CaSPL-gen. BeTTy outputs a FM according

2 For more information and additional advance settings please see https://github.com/magnurh/
CaSPL/blob/master/README.md.

3For more information related to these parameters and their behavior we refer the interested reader
to [22].
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Figure 2: CaSPL-gen process flow for creating CFMs.

to the FAMA format [4]. Then, CaSPL-gen executes a process, here denoted as Var-
ModelExtender, that reads the FM, adds one or more contexts and extends the FM with
VF. The obtained CFM is then converted and saved in a JSON file, according to the
HyVarRec format [14]. CaSPL-gen repeats this process for all the required number of
CFMs to generate.

The contexts are created randomly based on the restrictions set by the user. Every
context domain is generated randomly and then a random value in that range is assigned
to the context. After the generation of the contexts, Var-ModelExtender proceeds in the
generation of the VFs. Following the approach of BeTTy for the attributes, for simplicity,
VFs are generated only for leaf features.4 A VF is generated as a conditional between a
feature and a context, or between a feature and an expression involving a context and an
attribute. In the first case the VF formula has the form F = 1→C◦v, where F = 1 means
that feature F is selected, ◦ is a comparison operator and v is a value in the range of the
C domain. In the second case the VF has the form F = 1→ (C ◦ v→ a�w), where � is a
comparison operator, a is an attribute and w is a value of the domain of a. The Var-Model
Extender makes sure that the feature F is the owner of the attribute a, and that the values
v and w are within the defined ranges of C and a. The comparison operators used are
=, 6=,>,<,≥ and ≤.

To generate a VF, one feature and one context are picked randomly among all the ones
available. Which VF form is used is then selected randomly, except in one case: if the
selected feature is in a path from the root of the FM that is composed of only mandatory
features, the second form is selected (otherwise the first form would make the CFM likely
void for some instances of the context). If the VF is of the second form, an attribute is
generated and added to both F and to the VF. 5

Default execution modality
While the simple execution modality of CaSPL-gen just enriches the output of BeTTy
with contexts and VF, the default execution modality tries to minimize the number of
void CFMs, i.e., CFMs that do not admit any valid configuration. Moreover, CaSPL-gen
also applies strategies to avoid the generation of some dead features and dead trees, i.e.,
features and subtrees that can not be selected.

To reduce the number of void CFMs, the SAT-reasoner used within the BeTTy
framework is applied to evaluate the FM generated with BeTTy, establishing whether

4Note that this is only a syntactic limitation: exploiting the expressiveness of VFs, it is always possible
to normalize the CFM into a CFM having VF and attributes in its leaf features only.

5For the time being, CaSPL-gen supports features with maximum one attribute. Hence, in case more
VFs are added to the same feature, the same attribute is re-used.



the model is void. A SAT-reasoner is a tool that employs a systematic backtracking
search procedure to explore the space of variable assignments looking for satisfying a
propositional formula and it is often used to check if FM without context have valid
configurations [4]. If CaSPL-gen detects that the FM does not admit any single valid
configuration, BeTTy is executed again until a valid FM is produced. A limit on the
number of retries can be given in input as a parameter by the user.

Note that BeTTy supports the generation of attributes, but unfortunately it does not
support the analysis of FM with attributes. Since in the advance modality we use the
reasoner, differently from what is done in the simple execution modality, BeTTy is used
to generate FMs without attributes that are later added when generating the VFs. In the
default execution modality, context and VF are added as in the simple execution modality.
As the contexts, attributes are added in a straightforward way by randomly selecting a leaf
feature and a random range.

When the CFM is generated, techniques are used to discard CFMs that are too simple
that selecting only a few number of features is enough to have a valid configuration.
Indeed, real SPLs usually require the selection of more than one feature and therefore
a CFM where the root has only optional relations usually does not represent real life
problems. To avoid the generation of this kind of CFM, CaSPL-gen counts the paths from
the root feature of the generated CFM to features at a given level in the CFM tree. The
mandatory features are always followed. Instead, in case of Alternative-groups or optional
features are encountered, the feature with the lowest number of paths is followed. CaSPL-
gen discards a model if the number of paths is below a given threshold or, for complex
models with considerable size, if the check runs out of time. The threshold is dependent
on the size of the FM and can be set by the user.

CaSPL-gen also addresses a drawback of the BeTTy framework approach that when
it generates CTCs it adds them by choosing first two sub-trees in the FM at random
and then selecting a random feature in each of these sub-trees. In some cases, this
mechanism allows the selection of two features that are not in separate sub-trees, thus
possibly producing dead features and, in the worst case, it may make an entire sub-tree
not selectable. Moreover, when a CTC is added, it may be the case that the constraint has
no logical implications and is already captured by the structure of the FM. For example,
consider the case where features Fa and Fb are mandatory children of Fp, and a CTC
Fa→ Fb is added. Since the structure of the FM already implies the constraints Fa→ Fp
and Fp→ Fb, the CTC is already implied. On the other hand, if instead the added CTC is
Fa→¬Fb, we would have a contradiction to the constraint implied by the structure of the
CFM. In this case Fp becomes a dead feature: no valid configuration of the CFM will be
able to select it since if a configuration selects Fp it must also select Fa and Fb because of
the mandatory relations, which contradicts the CTC. Since Fp is a root of a sub-tree, all
the features in the sub-tree are dead features, making it also a dead sub-tree.

A dead sub-tree is not necessarily a significant problem if it only contains the three
features above. However, if Fp is a child of the root, the situation may result in half of
the features in the CFM being dead, which clearly is something we would like to avoid.
This problem will most likely not occur if Fp is either the root or a feature in a path of
mandatory features from the root. Indeed, in this case, the addition of the CTC would lead
to the whole model being void, which is detected early by running the BeTTy reasoner.
The SAT reasoner included in BeTTy however does not check for dead sub-trees. For
this reason, to reduce the risk of having big dead sub-trees, CaSPL-gen checks for two
common scenarios where a randomly generated CTC is not strictly a constraint between



features in two sub-trees. The first scenario occurs when the feature on the left-hand
side Fl can logically be interpreted to be a predecessor of the feature on the right-hand
side Fr (obviously the root feature of a sub-tree is a predecessor of all features in that
sub-tree). The second scenario occurs instead when the two features Fl and Fr have both
predecessors in the same Alternative-group. If CaSPL-gen finds that a CTC generated by
BeTTy falls into one of these two categories, the CTC is not added into the final CFM.

To check for the occurrence of the first scenario, CaSPL-gen locates the feature closest
to the root which has a mandatory path leading to Fl . Let us denote this mandatory
predecessor as Fml (note that if Fl is not mandatory then Fl = Fml). If Fml is a predecessor
of Fr, the generated CTC is not included in the final CFM. The reason behind this action
is that Fl must be selected if Fml is selected. Assuming that Fml is selected, if the CTC
is of the form Fl → ¬Fr, then Fr will never be selected, and the sub-tree of which it is
a root is a dead sub-tree. A CTC on the form Fl → Fr creates instead a mandatory path
from Fml to Fr, no matter what relations already exist in the path Fml, . . . ,Fr. This turns
all Optional-relations and Or-relations into the path Fml, . . . ,Fr into mandatory relations,
denaturing their intended meaning. In the case of Alternative-relations, the CTC does
create dead features because in any Alternative-groups passed by the path Fml, . . . ,Fr there
are features that can no longer be selected, meaning that they are dead features. Thus, the
CTC is not added to the CFM.

To check for the occurrence of the second scenario, CaSPL-gen looks through all
Alternative-groups and checks if they contain one predecessor of Fl and a different
predecessor of Fr. In this case the CTC is removed. The logic behind this action is
straightforward: let the predecessor of Fl be called Fpl and the predecessor of Fr be Fpr.
If the CTC is of the form Fl → ¬Fr it is superfluous: Fl can only be selected if Fpl is
selected, and Fr can only be selected if Fpr is selected. Since by definition of Alternative-
groups Fpl and Fpr can not be selected at the same time, Fl and Fr can not be selected at
the same time either. The contrapositive meaning of an Alternative-group is that for any
descendant F ′l of Fpl and for any descendant F ′r of Fpr there is an implied constraint that
one excludes the other. With that in mind, if the CTC is of the form Fl → Fr we have that
Fl is a dead feature. Hence, also in this case, to avoid the presence of dead features and
dead sub-trees it is better to remove the CTC.

Note that applying all these strategies helps avoiding some of the dead features that
may be created, but it does not guarantee that the final model comes without dead features
or that it is not void. Indeed, there may still exist less obvious relationships which
ultimately creates dead features (e.g., CTCs contradicting each other) or void CFMs.

Usage
CaSPL-gen is open source and developed in Java (∼ 2k lines of code). It is freely
available from https://github.com/magnurh/CaSPL. In order to facilitate its use, we
adopted the Gradle technology [10] to facilitate its deployment and a JSON file to set
its parameters. Detailed instruction for the deployment and its usage are available in the
repository Readme file.

As an example of the running time of CaSPL-gen, Table 2 reports some preliminary
experiments showing how long it takes to generate benchmarks varying two of the key
parameters: the number of features (numberOfFeatures) and the maximal number of
context (contextMaxSize) of the generated CFMs, keeping the other parameters set to
their default value.

https://github.com/magnurh/CaSPL


contextMaxSize numberOfFeatures
500 1000 2000 4000

10 367 1274 3458 21472
20 363 1270 5948 25590
40 513 1459 6065 28316
80 455 1769 6755 30614

Table 2: CaSPL-gen running time performance (in ms) varying two parameters.

4 Related work & Conclusions
The definition of random instances for evaluating the performance of algorithms has
attracted a lot of attention in the last decades. For instance, in the SAT and Constraint
community, different algorithms have been proposed to generate hard and realistic enough
instances (see, e.g., [21]). In the SPL community, as reported in the comprehensive
survey [5], numerous techniques and tools have proliferated to study and analyze FM.
The rapid progress of this discipline is naturally leading to an increasing concern about the
quality of the tools, especially when extensions of the standard FM formalism are taken
into account. In this context, current testing methods are mainly guided by intuition rather
than by well-studied testing techniques. This makes testing conclusions rarely rigorous
and verifiable, weakening the value and scope of research contributions. The presence of
a good selection of benchmarks alleviates this problem, allowing a rigorous comparison
of the tools and in the discovery of bugs. However, creating good quality benchmark is
a difficult and challenging task, due to the fact that a good benchmark should i) cover all
the different types of instances that can be submitted to the tools, ii) not be bias toward a
specific class of instances, iii) be small enough to allow a fast evaluation without wasting a
lot of computational resources. Ideally, the best approach for the creation of a benchmark
is the use of real feature models but, unfortunately, it is well known that companies are
reluctant to show their feature models to avoid revealing to their competitors strategic
business information. There are tentatives to derive variability models from open source
software [8,23] but these approaches are usually tailored to the mined open source project,
thus disallowing the production of benchmark with a big number of varying instances.

For this reason, usually random FMs are generated. One advantage of generating the
FM randomly is that the results are not limited by the lack of generalization that one might
get from hand-crafted or real models: randomly generated models might indeed take
into account currently unusual, yet possible problems that production tool of tomorrow
may face. Conversely, a disadvantage of random generated datasets is that there are no
guarantees that generated CFMs represent real-life situations, possibly diverting the tool
development towards instances that may never be encountered in practice, to the detriment
of the tool performance on real instances.

Up to today, random generated benchmarks are the most used way for testing and
comparing SPL reasoners and tools [16, 17, 22, 24]. However, all the available random
generated benchmarks consider standard FM only, few times taking into account also the
generation of attributes. To the best of our knowledge, CaSPL-gen is instead the first tool
to be able to generate benchmarks for CFM, taking into account attributes and context.

In this work we have presented CaSPL-gen and how it can be used in a simpler or
default modality, detailing the operation performed to reduce the likelihood to have void
CFMs or a huge number of dead features. A preliminary version of CaSPL-gen has been



already used to evaluate the performance of some analysis conducted by the HyVarRec
tool [15]. The CaSPL-gen has proven its usefulness by allowing to generate benchmarks
of CFM with thousand of features and up to 10 contexts in few minutes.

As a future work, we are interested in extending CaSPL-gen by investigating how
to further reduce the number of void CFMs that are generated and in speeding up the
generation process. Moreover, we would like to study how the finding on the hardness of
SAT problems [21] can be used in combination with techniques such as [13] to generate
harder and more industrial like CFMs.
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