CTL Model Checking with the
Sweep-line State Space Exploration Method

Andreas Lilleskare, Lars M. Kristensen, Sven-Olai Hgyland
Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences

Abstract

Model checking is a powerful approach to verification of distributed
systems. The sweep-line method alleviates the inherent state explosion
problem in model checking by exploiting progress in the system being
verified. Verification with the sweep-line method has until now been
restricted to verification of safety and linear-time properties. The contribution
of this paper is a new model checking algorithm that enables verification of
two common branching time properties. The basic idea is to combine the
sweep-line method with on-the-fly computation and inspection of strongly
connected components. We experimentally evaluate our algorithm on a
communication protocol.

1 Introduction

Designing and implementing distributed systems correctly is a challenging task. Model
checking [1] of software is a main approach to automated verification of system properties
and have been implemented in both industrial-strength tools and in academic prototypes.
The basic idea underlying model checking is to explore all reachable states of a system
model in order to algoritmically verify whether the system has a formally specified
property or not. Typical examples of properties include absence of deadlocks, that a
request from the user is always eventually followed by a response from the system, and
that it is always possible to reach a stable state. Properties in model checking are typically
specified in computation tree logic (CTL) or in linear-time temporal logic (LTL).

The main disadvantage of model checking is that the size of the state space (number
of reachable states) often grows exponentially in the number of processes of the system.
This is known as the state space explosion problem and is caused by the computational
complexity of the model checking problem. In practice, it is mostly the amount of space
(memory) which is the limiting factor. A wide range of methods have been proposed [12]
that exploits intrinsic properties of the system to reduce space consumption. One example
is the sweep-line method [7] which exploits progress in a system. Examples of progress
include phases that the system goes through, control-flow of the processes, and sequence
numbers in protocols. Progress is used to conduct a progress-first exploration of the state

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.

space and delete states from memory during the state space exploration such that peak
memory usage is reduced.

There exists sweep-line model checking algorithms for verification of safety
properties [8] and LTL properties [5]. The challenge of performing CTL model checking
with the sweep-line method is that conventional algorithms for CTL model checking [3]
propagates information backwards from a state to its predecessors. This is incompatible
with the forward progress-first exploration of the sweep-line method. In the context of
symbolic model checking using binary-decision diagrams (BDDs), forward CTL model
checking algorithms have been developed [6]. However, the sweep-line method is not
compatible with the use of BDDs. The reason is that deleting states from a BDD (as
required by the sweep-line method) may cause the memory usage for storing the BDD
to increase. This counteracts the idea of how the sweep-line method alleviates the state
explosion problem.

As a first step towards CTL model checking with the sweep-line method, we consider
in this paper two commonly used properties in CTL:

P-AGEF: the possibility of always being able to reach a state satisfying a state predicate
0. This property can be used to verify for instance that the system can always return
to its initial state after having processed a request.

P-AGAF: that a state satisfying a state predicate ¢ will always eventually be reached.
This property can be used to verify for instance that the system always produces a
response to the user.

The idea underlying our new algorithm is to consider systems with monotonic
progress and compute the strongly connected components (SCCs) of the state space on-
the-fly during the sweep-line state space exploration. The property P-AGEF holds if
each so-called terminal SCC contains a state satisfying ¢, while P-AGAF holds if a state
satisfying ¢ is present on every cycle contained in an SCC.

The following sections are organised as follows: Section 2 introduces the formal
foundation of this paper, and Sect. 3 introduces the sweep-line method and our new
algorithm. In Sect. 4 we formalise the algorithm and prove its correctness. Section 5
presents some first experimental results, and finally in Sect. 6 we sum up the conclusions
and discuss future work. The reader is assumed to be familiar with directed graphs and
graph traversal algorithms.

2 Kripke Structures and Computation Tree Logic

As is common in model checking research, we use Kripke structures as the underlying
formalism for formulating our algorithm. This makes our presentation independent of
any particular modelling language used to model the system under verification. A Kripke
structure is essentially a state-transition graph with nodes describing the reachable states
of the system, a transition relation describing state changes (edges), and a state labelling
specifying which atomic state propositions that are true in each state. An atomic state
proposition may for instance be x > 0 where x is some variable of the system. A path in
the Kripke structure then corresponds to an execution of the system.

Definition 1 (Kripke Structure [4]) Let AP be a set of atomic state propositions. A
Kripke structure M is a four-tuple M = (S,s0,R,L) where S is a finite set of states, so € S
is an initial state, R C S X § is a transition relation which is left-total, and L : S — 24P g
a function labelling each state with the atomic propositions that are true in that state.

@@

I@fﬁi

Figure 1: Example Kripke structure (left) and indication (right) of progress values (black
squares) and non-trivial strongly connected components (grey boxes).

That the transition relation is left-total means that for every s € S there exists an s’ € S
such that (s,s’) € R. This ensures that we can define paths as infinite sequences of states
in relation to the semantics of CTL.

Figure 1 (left) shows an example of a Kripke structure with two atomic propositions
p and g that we use as a running example. Each state is identified by an integer written
inside the state and next to each state we have written the atomic propositions that are true
in that state. State O is the initial state. We explain Figure 1 (right) in the next section.

Temporal logics such as CTL are used to specify behavioural properties. In this paper,
we do not consider the full CTL, but only formulas of the AG{EF,AF }-fragment that can
be obtained from the following grammar, where p € AP and ¢ is called a state predicate:

b= AGy
vy :=EF(§|AF0
O:=ploO1AG2[d1V 2|0

The formulas expressing behavioural properties of the system under verification are
interpreted over the paths of the Kripke structure. A path is an infinite sequence of states
T = 505152, . .. such that for every i > 0, (s;,s;11) € R. The set of reachable states are those
states that are present on some path starting in the initial state. The temporal operator
AG states that y must hold in all reachable states, EF states that there must exists a future
state in which ¢ holds, and AF states that eventually ¢ must hold. In particular, this means
that AG EF ¢ holds if and only if from any reachable state it is always possible to reach
a state in which ¢ holds. The property AG AF ¢ holds if and only if from any reachable
state we eventually reach a state in which ¢ holds.

Consider the example in Figure 1 (left). The property AGEF p holds since a state
satisfying p can always be reached. Similarly, AGAF (pV ¢) also holds since we always
eventually reach a state in which either p or ¢ holds. In contrast, the property AGEF ¢
does not hold since if we enter state 1, then we can no longer reach a state in which ¢
holds. The property AG AF p does not hold either since if the system starts in the initial
state, then enters state 2, and keeps executing in the cycle comprised of states 2, 3 and 4,
then we will never reach a state in which p holds.

For a path T = s9s1,52 ..., we write s € T if s is one of the states on the path, i.e., s =s;
for some i > 0. Based on this, we inductively define the semantics following [4] of the

CTL formulas considered in this paper, i.e., what it means for a formula f to hold in a
state s of the Kripke structure M, which is written M, s |= f.

M,s=p< pelL(s)

M,s|=—-0 < M,s =0

M,s ’:(I)l ANy = M,s ’:(])1 AM,s |:¢2

M,sE0 Vo & MsEb0VM,s =

M,s = AG vy < for every path 1 starting from s and state s; € T: M, s =y

M, s = EF ¢ < there exists a path w starting from s and a state s; € w: M, s; = ¢
M,s = AF ¢ < for every path 7 starting from s there exists a state s; € T: M, s; = 0

The purpose of a model checking algorithm is given a formula f and a Kripke structure
M to determine whether f holds in the initial state so, i.e., whether M, so |= f.

3 Sweep-line CTL Model Checking

Conventional algorithms for explicit state model checking start from the initial state s and
then explores the complete state space (Kripke structure) using the transition relation R
to compute for each encountered state, the set of successor states. The set of encountered
states is stored in a set of visited states in order to ensure termination, and states for which
successor states are still to be computed are stored as a set of unprocessed states. When
processing a state, only successor states that have not already been visited are inserted
into the set of unprocessed states. This means that the size of visited states grows as more
of the state space is explored and eventually contain all reachable states of the system.

The idea of the sweep-line method is to exploit a notion of progress to delete states
from the visited states when it is known that they are no longer needed for comparison
with newly generated states. This means that the size of the set of visited states is reduced
on-the-fly during state space exploration which in turn reduces memory usage.

Progress is formally quantified by means of a progress measure which maps each state
into a progress value according to the following definition.

Definition 2 (Monotonic Progress Measure) A monotonic progress measure on a
Kripke structure M = (S, so,R,L) is a tuple P = (O, C,) such that O is a set of progress
values, T is a total order on O, and ¢y : S — O is a progress mapping such that

(s,5") € R=y(s) Cwy(s).

The progress mapping divides the state space into layers where a layer contains all
states mapped to a given progress value. As an example, consider Fig. 1(right) where we
have used dashed vertical lines to indicate the layers. Furthermore, we have used a black
rectangle with a number indicating the progress value of the states in a layer. Layer 1
contains the initial state, layer 2 contains states 1-5, and layer 2 contains states 6-11.

The basic sweep-line algorithm starts with the layer containing the initial state and
then explores the state space one layer at a time. When all states in a given layer have
been processed, the states in the current layer are deleted since they are not needed for
comparison with newly encountered states, i.e., determining whether a newly generated
successor state is already contained in the set of visited states. The reason for this is that
due to the monotonicity of the progress measure, any newly generated state cannot have

a successor in a previous layer. This means that with a monotonic progress measure, the
system always makes progress. For the state space in Fig. 1(right), the sweep-line method
would start from state 0 and then compute the successor states 1 and 2. Since there are
then no longer any unprocessed states in layer 1, state O will be deleted. The algorithm
now proceeds into layer 2 starting with the processing of states 1 and 2. This will cause
states 3-7 to be encountered at which stage there are no longer any unprocessed states in
layer 2. The states in layer 2 can then be deleted and the algorithm proceeds with the
states in layer 3. Altogether this means that at most 7 states (the five states in layer 2, and
state 6 and 7 in layer 3) at a time are stored in the set of visited states. This is in contrast
to storing all 12 states in the set of visited states. It should be noted that a generalised
variant of the sweep-line exists [8] that can handle non-monotonic progress measures, but
in this paper we consider only monotonic progress measures.

Our new algorithm to model check the P-AGEF and P-AGAF properties with the
sweep-line method exploits strongly connected components (SCCs). An SCC of a directed
graph is a maximal subset of nodes that are mutually reachable. By viewing the Kripke-
structure as a directed graph we can compute the SCCs for the Kripke structure. In
Fig. 1(right) we have indicated the SCCs consisting of more than just a single node
(state) using a grey box. These are called non-trivial SCCs. In addition to these, each
of the nodes 0, 1, 5, and 6 belongs to an SCC containing only the node itself. We use
the notation SCC{xy,x7,...,x,} to denote the SCC consisting of nodes x,x2,...,Xx,. A
terminal SCC is an SCC where no node has outgoing arcs to nodes in another SCC. As
an example, SCC{8} and SCC{7,9,10,11} in Fig. 1(right) are terminal SCCs.

Because of the monotonicity of the progress measure, an SCC can only contain nodes
belonging to the same layer and hence each SCC is always contained in a single layer. In
particular this means that we can compute the SCCs for a given layer immediately before
the sweep-line deletes the states in the current layer and moves on to the next layer.

The key observation is that the property AG EF ¢ holds if and only if each terminal
SCC contains at least one state satisfying the state predicate ¢. As an example consider
Fig. 1. Because states 8 and 11 both satisfy p, then each of the two terminal SCCs contains
a state satisfying p, and hence AGEF p holds. AG EF ¢ does not hold since SCC{8} does
not contain a state satisfying ¢g. Furthermore, the property AG AF ¢ holds if and only
if all cycles within each SCCs contains a state satisfying g. As can be seen in Fig. 1,
all cycles contains a state satisfying either p or ¢, and hence AGEF (p V ¢) holds. In
contrast, AG AF p does not hold since the cycle consisting of states 2, 3 and 4 contained
in SCC{2,3,4} does not include a state satisfying p. The cycle consisting of states 7, 9,
10 in SCC{7,9,10,11} is another cycle demonstrating why AG AF p does not hold.

4 Algorithm and Correctness

Algorithm 1 specifies our sweep-line model checking algorithm. It is identical to the
standard sweep-line algorithm for monotonic progress measures [2] with the exception of
line 19 in which we invoke the procedure CHECKSCC to be presented later in this section.

The sweep-line algorithm starts by initialising the set of visited nodes A and the set
of unprocessed nodes U to be the initial state sg. In addition to the sets of visited nodes
and unprocessed nodes, the algorithm also maintains a set £ consisting of the nodes that
have been processed in the current layer and a value pcl storing the progress value for
the current layer. The algorithm executes a loop (lines 14-37) until we have no longer
any unprocessed nodes (states). In each iteration of the loop, we pick one of the nodes
s with the lowest progress measure among the unprocessed nodes (line 15). We then

Algorithm 1 The sweep-line AG{EF,AF } model checking algorithm

1: Set of nodes (states) N > Visited nodes currently stored
2: Set of nodes (states) U > Unprocessed nodes
3: Set of nodes (states) L > Nodes processed in the current layer
4: pcl > Progress value for the current layer
5: (so,R) > Initial state and transition relation for the Kripke structure
6: (0,C,v) > Progress measure
7. @ > CTL AG{EF,AF } formula to be checked

8: procedure SWEEP()

N+ {so}
10: U<+ {so}

11: ple <y (sp)

N

12: L0

13:

14: while U # 0 do

15: let s be such that s € W and Vs’ € U : y(s) Cy(s)

16: U<+ Uu\{s}

17:

18: if plc # y(s) then > move into the next layer
19: CHECKSCC(L,R,®P)

20: N+~ N\L

21: L+0

22: pel =y(s)

23: end if

24:

25: L+ LU{s}

26:

27: for all (s,s) such that (s,s") € R do > explore successor nodes
28: if s ¢ A then

29: if y(s) Z y(s') then

30: EXIT(“Error: progress measure not monotonic™)
31: else

32 U+ uJ{s'}

33: N+ NU{s'}

34: end if

35: end if

36: end for

37: end while

38:

39: return true

40:

41: end procedure

first check (line 18) if this node is in a subsequent layer, i.e., we are now about to move
into the next layer. In that case we invoke the CHECKSCC procedure with the set of
nodes L in the current layer before deleting the nodes in the current layer from the set

of visited nodes. The next step is then to add s to the current layer (line 25) and then
compute the successors of node s. If the node has not yet been visited, then it is added
to the set of unprocessed nodes. The algorithm also checks on-the-fly that the progress
measure is indeed monotonic (line 29) and if not, then the algorithm terminates with an
error message.

The correctness of the algorithm rests on the fact that the sweep-line method visits
all reachable states, that each SCC is contained in a single layer, and that the CTL
properties can be checked by inspection of the SCCs individually. That the basic sweep-
line algorithm (without the invocation of the CHECKSCC procedure) terminates after
having visited all reachable states (completeness) is stated in the following theorem which
was already proved in [2]:

Theorem 1 (Completeness and Termination) [2] Let M = (S,so,R,L) be a Kripke
structure and P = (O,C,y) a monotonic progress measure on M. The sweep-line
algorithm terminates after having visited all states reachable from the initial state s.

To establish the correctness of the new sweep-line algorithm augmented with the
CHECKSCC procedure, we first establish a proposition stating that all nodes of an SCC of
the Kripke structure (state space) will be contained in a single layer, i.e., an SCC cannot
span multiple layers.

Proposition 1 Let M = (S,s0,R,L) be a Kripke structure and P = (O, C,) a monotonic
progress measure. Let SCC be the set of strong connected components of M, and let
scc € SCC be a strongly connected component. Then: Vs,s' € scc: y(s) =y(s).

Proof. Assume that there exists an scc € SCC and states s,s” € scc such that y(s) #
y(s). Hence either y(s) IZ y(s') or yw(s') Z y(s). Since s and s’ are in the same SCC,
then they are mutually reachable and there must therefore exists (s;,s;) € R on the path
from either s to 5" or s to s such that y(s;) Z y(s;). This contradicts that the progress
measure is monotonic.

A consequence of Prop. 1 is that SCCs can be computed by considering one layer at
a time. Furthermore, Thm. 1 ensures that the sweep-line method covers all reachable
states which means that we will encounter all SCCs at some stage. The remaining
step is therefore to link the inspection of SCCs to the model checking of the P-AGEF
and P-AGAF properties. This is done in the proposition below which formalises the
requirements informally introduced at the end of Sect. 3:

Proposition 2 Let M = (S,s0,R,L) be a Kripke structure. Let SCC be the set of
strongly connected components of M, SCCy C SCC the set of terminal strongly connected
components, and let ¢ be a state predicate. Then:

1. M,s0 = AGEF ¢ < Vscc € SCCr3s € scc: §(s)
2. M,so = AGAF ¢ < Vscec € SCC: (scc\ {s € scc: §(s)},R) is acyclic

Proof. First we prove 1. Assume that AG EF ¢ holds and there exists a terminal SCC
named scc such that no states in scc satisfy ¢. Since all states belong to some SCC, then
we can find a path from the initial state to a state s in scc. Since scc is terminal and do not
contain states satisfying ¢, then we can no longer reach states that satisfies ¢ from s. Hence
AGEF ¢ cannot hold. Assume that each terminal SCC contains a state satisfying ¢ and
let s be any reachable state. Since we cannot have cycles that spans multiple SCCs and all
states belong to some SCC, there must exists a path from the SCC to which s belongs to a
state 5" in some terminal SCC. Within this terminal SCC, all states are mutually reachable
and by our assumption at least one state in there satisfy ¢. Hence AG EF ¢ holds.

Next we prove 2. Assume that AG AF ¢ holds and there exists an scc such that when
all states satisfying ¢ are removed from scc we still have a cycle consisting of states in
scc. In that case we can find a path sq, s ...s leading to a state s on this cycle, and we
can then extend this to an infinite path by repeating the states on the cycle to which s
belong. Since no state on the cycle satisfy ¢, then AG AF ¢ cannot hold. Hence we cannot
have such cycles. Assume now that each strongly connected component becomes acyclic
when removing states satisfying ¢. Since all cycles belongs to some strongly connected
component, then we cannot have cycles where no states satisfy ¢. Hence from any states
on an infinite path we must eventually encounter a state satisfying ¢ which means that
AG AF ¢ holds.

Based on Prop. 2 we can now specify the CHECKSCC procedure which is given in
Algorithm 2. The procedure first computes the SCCs of the given layer L. Here any
algorithm for computing SCCs can be used, and we do not specify this further. Based on
the SCCs and Prop. 2, the procedure then checks whether the property being investigated
is violated in which case false is returned and the entire algorithm terminates.

Algorithm 2 Checking strongly connected components of the current layer

1. SCC > set of strongly connected components
2:
3: procedure CHECKSCC(L,R, D)
4: SCC <+ COMPUTESCCS(L,R)
5: if ® = AGEF ¢ then
6: for all scc € SCC do
7: if ISTERMINAL (scc,R) AVs € scc: =¢(s) then
8: return false > Terminal SCC without node satisfying ¢
9: end if
10: end for
11: end if
12: if ® = AGAF ¢ then
13: for all scc € SCC do
14: V < sce\ {s € scc|0(s)}
15: if HASCYCLE(V,R) then
16: return false > SCC with cycle not containing a node satisfying ¢
17: end if
18: end for
19: end if

20: end procedure

We have not specified the details of the ISTERMINAL and HASCYCLE procedures. The

ISTERMINAL procedure can be implemented by checking that all successors of nodes in
the SCC are contained in the SCC. The HASCYCLE procedure can be implemented by,
e.g., a depth-first search of the nodes in V.

The completeness of the basic sweep-line algorithm and Prop. 1 ensures that all
strongly connected components will eventually have been computed and inspected in
Algorithm 2. Furthermore, Algorithm 2 is a direct implementation of the two properties
stated in Prop. 2. We therefore have the following theorem concerning the correctness of
our algorithm:

Theorem 2 Let M = (S,s0,R,L) be a Kripke structure, let P = (O,C,) be a monotonic
progress measure on M, and let ® = AGEF¢ or ® = AGAF¢. Then Algorithm 1
terminates and M, sy |= ® if and only if the algorithm returns true.

In Algorithm 2 we have separated the computation of SCCs from the checking of
the SCCs. As an optimisation it is possible to integrate the checking of the properties
of the SCC into the SCC computation algorithm. This could make it possible to check
the SCCs as they are encountered by the SCC-algorithm. As a further optimisation it is
also possible to compute the SCCs as the layer is being explored and not at the end of
exploring a layer. However, for reason of clarity, we have decided to separate the two
steps in the formulation of the algorithm.

An important property of model checking algorithms is the ability of providing error-
traces (counter examples) in the cases where a property cannot be verified. Obtaining
error-traces (paths) that demonstrate why a property does not hold requires special
techniques in the context of the sweep-line method. The reason is that parts of the
error-traces will in most cases have been deleted from memory during the state space
exploration. A technique based on writing an inverse spanning tree to external storage
during the state space exploration was presented in [9] and is compatible with the
algorithm described above.

S Implementation and Experimental Results

We have made an implementation of our new sweep-line algorithm using the C++
programming language [10]. The implementation uses a hash table to store the set of
visited nodes currently in memory, and a priority queue for storing the set of unprocessed
states. The progress value of a state is used as priority in the priority queue in order
to ensure a least-progress-first exploration of the state space (smallest progress value
has highest priority). We have used Tarjan’s algorithm [11] to compute the SCCs in
each layer during sweep-line exploration. The implementation also includes a simple
implementation of the spanning tree algorithm [9] in order to provide error-traces.

We have evaluated the implementation of our algorithm on a communication protocol
system in which a sender is to send a number of data packets to a receiver across a
network where packets may be lost and overtake each other. The protocol employs
sequence numbers, timeouts, acknowledgments, and a stop-and-wait retransmission
strategy in order to ensure that the receiver receives all data packets exactly once and
in the correct order. The basic idea is that the sender keeps sending the current data
packet until an acknowledgment on this data packet is received. Upon reception of an
acknowledgment, the sender starts sending the next data packet. The protocol has two
parameters: the number of data packets to transmit and the number of packets (data
and acknowledgments) that can be under transmission in the network. We consider two

variants of the protocol: one in which the receiver always sends an acknowledgment when
receiving a data packet, and one in which the receiver only sends an acknowledgment
when it is the expected data packet arriving. The protocol has been modelled using the
Coloured Petri Nets modelling language and CPN Tools. Due to space limitations we do
not present the model here but have made it available via [10].

The sequence numbers stored locally by the sender and the receiver are increasing and
hence we can use these as a measure of how far the protocol has progressed. Specifically,
the sender keeps a sequence number indicating the sequence number of the data packet
currently being sent, and the receiver keeps a sequence number indicating the sequence
number of the data packet expected next. This means that we can map each state of the
system into a pair of integers consisting of the sequence number stored at the sender and
the sequence number stored at the receiver. Lexicographical ordering on these pairs then
gives a monotonic progress measure for the protocol system.

For the protocol system, we consider verification of the following properties:

P1: AGEF 0,,., wWhere 0, 1s a state predicate stating that all data packets have been
received in the correct order. Hence, the property states that it is always possible to
enter a state in which all data packet have been correctly received.

P2: AGAF dguraa11 Where dgq04q17 18 @ state predicate stating that a data packet has been
sent or all data packets has been received. Hence, the property states that eventually
we either send a data packet or all data packets have been received.

P3: AGAF ¢, where ¢, is a state predicate stating that an acknowledgment has been
sent. Hence, the property states that we always eventually send an acknowledgment.

Table 1 summarises selected experimental results for different configurations of the
protocol. Configurations are written on the form N — C where N specifies the number of
data packets and C specifies the capacity of the network. The States column gives the
number of states in the state space and the Edges gives the number of edges. The Peak
column lists the peak number of states stored in memory during exploration as percentage
of the total number of states. Finally, the column E-Time gives the time in milliseconds for
conducting an ordinary sweep-line exploration (without CTL model checking). Column
C-Time gives the extra time for doing CTL model checking using our new sweep-line
algorithm relative to the E-Time column, i.e., basic sweep-line exploration. Finally,
column T-Time gives the extra time relative to the E-Time when we additionally stored a
spanning tree in external storage to be able to provide error-traces.

We have not listed the configurations related to the checking of AGEF ¢, and
AGAF 0, in the case where an acknowledgment is sent only when it is the expected
data packet arriving. The reason is that the purpose of these configurations were to check
that the our implementation is able to correctly detects violations of a property being
verified. Property P1 does not hold in these configurations and the error-trace provided
shows how loss of an acknowledgment will cause the sender to keep sending a data packet
which is not the one the receiver is expecting. This in turn means that the receiver will
not send an acknowledgment and the protocol is no longer able to reach the state in which
all data packets have been correctly received. Property P3 is not satisfied in any of the
configurations. These results are as expected and contributes to validating the correctness
of our implementation.

The results from the verification shows that properties P1 and P2 hold in all N - C
configurations (as expected). As can be seen from the Peak column, then the sweep-line

Config Property States Edges Peak E-Time C-Time T-Time

222 AGEF 0y 7044 22419 66% Tms 429% 485.7%
222 AGAFOumaan 7944 22419 66% Tms 429% 471.4%
302 AGEFOu,, 14,672 41611 49% 14ms 429% 464.3%
302 AGAFOuwaan 14672 41611 49% 15ms 40.0% 420.0%
103 AGEFOu,e, 24052 98,671 198% 35ms 314% 285.7%
10-3 AGAF Ouuaan 24,052 98,671 198% 35ms 34.3% 308.6%
153 AGEFou, 78,027 326906 13.8% 152ms 27.0% 241.4%
153 AGAFOuuaan 78,027 326906 13.8% 147ms 32.0% 240.8%
163 AGEF0u,e, 94226 395825 13.0% 236ms 55.5% 178.4%
163 AGAFOuuear 94226 395825 13.0% 182ms 37.4% 240.7%
173 AGEF0u,o 112,525 473,808 123% 306ms 464% 229.4%
173 AGAF Ouuaay 112,525 473,808 123% 237ms 333% 219.4%
183 AGEF0u,e 133,052 561,415 11.6% 287ms 456% 231.0%
183 AGAFOuuea 133,052 561,415 11.6% 284ms 384% 221.1%
193 AGEF0u,e 155935 659206 11.1% 348ms 38.8% 215.8%
193 AGAFOuuear 155935 659206 11.1% 357Tms 47.3% 250.1%
203 AGEFOu,., 181,302 767,741 105% 437ms 38.0% 200.7%
203 AGAFOuuaa; 181,302 767,741 105% 449ms 332% 186.4%

Table 1: Selected experimental results on the communication protocol example.

method significantly reduces the peak number of states stored (to typically between 5 % -
20 %). Reduction of peak memory usage is the main goal in model checking as it is space
which is the limited factor. Furthermore, the C-Time columns shows that the overhead of
our SCC-based CTL model checking algorithm is relatively small. The main contributer
to overhead in terms of time is the external storage of information to generate error-traces
as is evident from the T-Time column. This is, however, not an attribute of our CTL
model checking algorithm but applies also when used with the sweep-line algorithms for
safety and LTL model checking.

6 Conclusions and Future Work

We have proposed a variant of the sweep-line method that enables on-the-fly model
checking of two commonly used CTL properties. The key idea in our approach was
to combine the computation of strongly connected components with the least-progress-
first exploration of the sweep-line method. Our initial experimental results show that the
sweep-line method is able to significantly reduce peak memory usage which is important
as space is the limiting factor in model checking. Furthermore, the CTL properties can be
checked with a modest overhead in terms of time.

CTL model checking with the sweep-line method has until now been an open research
problem, and the algorithm presented represents a first step towards addressing this. The
extension of our approach to cover a larger subset of CTL properties is an important
direction of future work. A related direction is to develop CTL model checking techniques
that can be used for non-monotonic progress measures - and not only monotonic progress
measures as presented in this paper.

Our experimental results also showed the relevance of investigating efficient external-
memory (I/0) techniques for writing the inverse spanning tree (needed in case of counter
example generation) to external storage during state space exploration. A direction for
future work is also to evaluate our implementation on a larger set of example models.

References

[1]
(2]

[10]

[11]

[12]

C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

S. Christensen, L. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In Proc. of TACAS’01, volume 2031 of Lecture Notes in
Computer Science, pages 450—464. Springer, 2001.

E. Clarke, E. Emerson, and A. Sistla. Automatic Verification of Finite-state
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-263, 1986.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 2000.

S. Evangelista and L. Kristensen. Hybrid On-the-fly LTL Model Checking with
the Sweep-Line Method. In Proc. of ICATPN’12, volume 7347 of Lecture Notes in
Computer Science, pages 248-267, 2012.

H. Iwashita, T. Nakata, and F. Hirose. CTL Model Checking Based on Forward
State Traversal. In Proc. of Computer-Aided Design, pages 82—87. IEEE Computer
Society, 1996.

K. Jensen, L. Kristensen, and T. Mailund. The Sweep-line State Space Exploration
Method. Theoretical Computer Science, 429:169-179, 2012.

L. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety
Properties. In Proc. of Formal Methods 2002, volume 2391 of Lecture Notes in
Computer Science, pages 549-567, 2002.

L. Kristensen and T. Mailund. Efficient Path Finding with the Sweep-Line
Method Using External Storage. In Proc. of Internatioanl Conference on Formal
Engineering Methods, volume 2885 of LNCS, pages 319-337. Springer, 2003.

Sweep-Line C++ Implementation Library. Available via:
https://bitbucket.org/exoen/sweepline, 2017.

R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal of
Computing, 1(2):146-160, 1972.

A. Valmari. The State Explosion Problem. In Lecture on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science, pages 429-528. Springer, 1998.

