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Abstract
Recognition of human activity from sensor data iesearch field of great potential.
Giving autonomous systems the ability to identifyatva human subject is doing at
a given time is highly useful in many industriegrtcularly in health care and
security monitoring. Our results, using a publierdin dataset, show that the state-
of-the-art decision tree ensemble algorithm XGBagses an accuracy of 94.6%
validated on an independent test set. Previousblighed results using support
vector machines (SVM) gave an accuracy of 90.2%faAas we know, our result is
the new state of the art for this data set. Redmgniof human activity carries
potential privacy concerns, which to some degressitain the choice of sensor
technology. Therefore, systems such as ours whah identify activities from
simple inertial sensors, e.g. accelerators andsggmes are of particular interest.
Data from such inertial sensors are difficult téeipret using mechanistic models;
hence the field of Machine Learning is particulanteresting for this application.

1 | ntroduction

Human Activity Recognition (HAR) is the processiaéntifying what a person is doing
based on sensor readings. Activities are genedaliged into classes, and the goal of
HAR is to identify which class of activity is perfoed. There are many applications of
HAR. For example, a HAR system could detect abnbaotvity in a crowd of people
and allow identification of possible threateninguations, or detect that a person is in
need of assistance. Another situation where idengf human activity can be very
useful is the monitoring of elderly people in neédare [1].

Several types of sensor systems can be used twifglasiman activities. One
popular approach is computer vision systems. Anaglpplicable sensor system is the
use of inertial sensors, e.g. accelerometers amkgypes. Most modern smartphones
have such sensors built into them. Modern silicaloritation technology has allowed
micro-scale sensors, often referred to as MicratEdeMechanical Systems (MEMS)
such as accelerometers and gyroscopes to be pobdbheaply and in small packages.
This makes the identification of human activityrfranertial data especially interesting,
as such sensor systems could be applied withoutpeetical inconvenience to the
wearer of the sensors.

The data set used in this project was taken frolm Reyes-Ortiz, et. al. [2], and
has been used in several projects [3-5]. The asithee machine learning methods to
analyze the data. Support vector machines (SVMysed in [3] to classify six different
activities, walking, walking upstairs, walking dostairs, standing, sitting and laying.
Classification results are on the order of 70-90%h whe laying activity having a
particularly high success rate of 100% correctsif@sitions.

Based on the promising results in [3] it is of netd to evaluate other
classification algorithms and compare their perfamge with the SVM results. In the
present work, the same data set as used in [3hatyzed with three decision tree
classification methods, namely C5.0, Random FaedtXGBoost [6].



2 Methods and algorithms

XGBoost is generally the most accurate machineniegr(ML) method in use today,
and it is used to win around 50% of Kaggle cometg. XGBoost is a state of the art
tree ensemble method, which contains an extensivefsegularization mechanisms to
prevent overfitting. Random Forest (RF) is by fa& thost used tree ensemble method;
hence it is of interest to compare results fromdoam Forest and XGBoost. The C5.0
algorithm with boosting is included here only fangparison with the more modern
methods; XGBoost and RF.

21 Model development in machine learning

Models of physical systems can be classified by thfferent types. Mechanistic
models are based on physical equations, such as arabs energy balances, while
empirical models are based primarily on measurerdatd. Machine learning (ML)
uses predominantly empirical models [7]. Exampletypical empirical models used in
ML include artificial neural networks (ANN) and dsion tree models [7-9]. Empirical
models can be used for regression, where the ougpat numerical value, or for
classification giving an output from a set of deterclasses. In this paper all the applied
methods are based on decision trees for classticd?lost ML methods using decision
trees include multiple trees in the form of an emsle or forest. Different methods train
and combine trees in different ways.

Empirical models are calibrated based on a setofihg data. To verify that the
model gives reasonable predictions of the physgatem, a second test data set must
be used. The testset must be independent of tilntyadata in order to ensure realistic
predictions of model performance. Cross-validat{@V) [7] can be used to create
pseudo-independent datasets during model calibrati@rder to perform intermediate
tests for the purpose of e.g. finding optimal hyparameters. A hyper parameter, also
called a tuning parameter, is a parameter of théhadeitself, and not subject to
calibration in the training of a model. Examples lofper parameters can be the
maximum depth of a decision tree or the numberaafes in an ANN. Much of this
paper is concerned with the discussion of chookyper parameters, i.e. tuning of the
method, such that the calibrated model has optitaakification accuracy.

A decision tree is based on a set of splittingedat where each criterion
constitutes a node in the tree. Each possible mécof a split constitutes a branch in
the tree, such that each branch represents a segiéme data. After a node, each
branch leads either to a new splitting node or tteaf node. A leaf node in a
classification tree contains a single class whionsttutes the model output. The
models prediction for a new sample is determinedhgyoutput class associated with
the leaf node the sample reaches after traveliraugh the various splits in the tree.

At each node a single predictor, i.e. a variablthendata set, is used to separate
the data into segments [7]. The number of segmants the value of the splitting
criteria depend on the type of predictor. For amnbusly valued predictors as used in
this paper, each tree node splits the data in &vts pased on a single value. This value
is chosen such that the two sub-sets of the data@timizing a chosen performance
criteria such as Gini impurity index [7] or Shanremtropy [7]. For a classification tree
the chosen performance criteria describes quamgtatthe degree of success for a
specific split in segregating the different class@gtimal performance indicates that the
different classes are segregated by the splitaditphest degree possible.



To avoid overfitting, i.e. making a model that déses details in the training
data that are essentially random noise, reguléisas applied. Different methods use
different selection of regularisation methods.

2.2 Random Forest

Random Forest [10] is based on the idea of usimgsbrapping, i.e. random selection of
training samples with replacement. Furthermore,d®an Forest extends the idea of
randomization by also choosing a selection of mteds at random. If all the same
predictors are used in every bootstrap aggregatedbagged”, iteration, the resulting
trees will have some degree of correlation indubgdthe predictors. However, by
randomly selecting both predictors and samplesdBanForest decorrelates the trees
in the ensemble further. The number of predictdresen at each iteration is often
denominated g, and is considered a hyper parameter of the algoriAdditionally,
the number of trees, i.e. bagging iterations, malsi be chosen [7].

2.3 XGBoost

XGBoost is an acronym for eXtreme Gradient Boostjfj The algorithm is an
implementation of a gradient boosting machine [8tadient boosting machines are
based on an ensemble of decision trees, as discussgection 2.1, where multiple
weak learner trees are used in combination aslectiok to give better predictions than
individual trees can do [7]. In comparison with eddgradient boosting algorithms,
XGBoost has superior regularization and better hagaf missing values, as well as
much improved efficiency [6].

24  Boosting

The concept of boosting is to use an ensemble akw&arners to iteratively improve
on the results of the previous model. Th@aBoost algorithm, as discussed in [7],
consists of a sequence of weak classifiers. In eterhtion, the best classifier is
identified based on the current sample weights. élagsification errors in the current
iteration receive more weight in the next iteratiauile the inverse is true for correctly
classified samples. Each iteration focuses on f@rdifit aspect of the data, such that
regions of data that are difficult to classify a&reated separately. In the final stage, an
ensemble is created from the combined overall sempuef classifiers. This ensemble is
likely to have a better prediction performance thag individual classifier [7].

3 The activity recognition data set

The data set used in this project [2] and was ctte by using a Samsung Galaxy S2
attached to the waist of 30 volunteer test subje@ata was recorded from
accelerometers and gyroscopes as the subjectsmpedasix typical daily activities. The
activities were classified as horizontal walkingalking upstairs, walking downstairs,
sitting, standing and laying.

The raw data consist of six channels of data measgtiie body acceleration and
angular motion from the gyroscope in three spaliactions. A sampling rate of 50Hz
was used. These sensor signals where pre-prodegsgaplying a selection of methods,
described in [2]. Notably, the acceleration sigisakeparated in its gravitational and
body motion component. The measurements weredtasing a sliding window filter.
Finally, a vector of features was calculated givantptal of 561 predictors used in this
project.



3.1 Independent training and test set

The data set was originally split into training dest sets by randomly selecting 30% of
the human test subjects for the test set [2], shiahthe subject pools for each dataset
are disjunct. This ensures that the test datadspendent of the training data. The
training and test set contains 7352 and 2947 sanpepectively. It is reasonable to
expect significant variation between how differenbjects perform the same activity,
e.g. different walking patterns or walking gaithiefefore, which subject is performing
an activity will also influence the data in additito the activity itself. Further, since the
data is recorded as time series during an actiwityltiple samples from the same
person doing the same activity is included in th# flata set. Hence any form of
random selection of samples, i.e. bootstrappingcrass-validation (CV), will not
produce independent data sets. It is likely that succh subsampling will cause the
same subject and activity combination to end upnuitiple sub-sets. This effect is
apparent later when tuning hyper parameters us\hgrCthe training set. As the results
will show, the accuracy estimates generated by CG¥ averly optimistic when
compared to accuracy estimates performed on a prape independent test set.
Regardless, the CV accuracy results are assumieel isable for parameter tuning, but
should not be taken as estimates of the methodiydbipredict independent data.

4 Analysis and results

4.1  Correlation between predictors

With such a large number of predictors, which el derived from the same six sensor
channels, it is natural to expect a high degreeoofelation between variables. For the
decision tree methods used in the following, sudhretation can present some

difficulty, since it makes the choice of optimalegdrctor on which to split somewhat

arbitrary [7].
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Figure 1 - This plot shows the correlation mator &ll 561 predictors. Such a large matrix is difft to
analyze manually. The R packagerplot is used to organize the predictors such that predi with
high correlation are plotted together in groupstkBmlor signifies high correlation while low colagon
is plotted in white. While detailed analysis of Bucplot is difficult when the number of predictiss
large, it is useful to investigate the structureéhaf correlation matrix.



If multiple predictors contain essentially the sami@rmation, i.e. the same relevance
to the classification process, the tree algorithm#i have degraded prediction
performance due to this irrelevancy in the choitelnich predictor gives the optimum
split at each tree node [7]. To highlight the pewb) a correlation analysis of the data is
performed using the R functiaor. This calculates inter-predictor correlations idada
matrix, and theorrplot method from the librargorrplot can be used to plot the results.

The correlation matrix plot in Figure 1 shows tliaé correlation between
variables, or predictors, is extensive. The plobvsh essentially three groups of
correlated predictors and it may be concludedttiexre are a large number of predictors
giving essentially redundant information.

4.2  Principal Component Analysis (PCA)

A natural next step is to use PCA to inspect tha father [11]. The software package
Unscrambler X by CAMO is used to perform PCA. Thiscomposes the data into
principal components, in the form of scores andlilngs [12]. These plots can be
interpreted to gain insight into the important tdtstructures in the data. A principal
component (PC) can be thought of as a hidden Jariab a latent structure in the data.
It consists of a direction in the predictor spadaclhy maximizes the variance of the
samples. Each PC is normal to all the other PQish ghat there is no correlation
between them. The score-plot can be used to igegtduping of samples. Loading-
plots show the effect of all the variables on tia2sP
Prior to computing PCA, the data is pre-processél eentering and scaling.

The centering transformation subtracts the avevatiee from each predictor, such that
the new data is zero centered. The scaling tramsfibon divides each predictor by its
standard deviation. This has the effect of tramsfog the data such that all predictors
have a standard deviation of one, thus influentiregcomputation of PC’s equally.
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Figure 2 - Scoreplot from PCA, including color lageor each of the six activities. The plot shottt
by using PC-1 and PC-2 it is possible to sepatatesand dynamic activities.

In Figure 2, as shown by the legend, each of theesiponse classes is highlighted by
gray-tone and marker shape. Dynamic behaviors rkedawith dots while stationary

behaviors are marked with cross. The horizontas akiows PC-1, the most dominant
PC, which accounts for 51% of the total variatiorthe data set. By inspection of this
plot, it is clear that there are two groups of sk®mpThe three classes that contain



samples from subjects that are walking are clesgparated from the other three classes
where the subject is stationary. Furthermore, éRE-2 direction, containing 7% of the
total variation, the three walking activities angther separated but with significant
overlap. This analysis shows that it is reasonébleontinue with classification, since
there is clearly information in the predictors thatrelate to the activity class, i.e. there
IS some structure in the data that can be usedldoyritams to build classification
models.

4.3 Random Forest

The Random Forest method is the first method usediassify the data. However, due
to the high number of predictors and samples in @fm@ementioned training data,
several deviations from suggested “best practiog7] in terms of tuning parameters
were done here. This tuning of the parameters belidiscussed in a subsequent sub-
section. In ref [7], Kuhret.al. suggest tuningy,, from 2 to P, where P is the number of
predictors, in five evenly spaced values. The ahitest here is rather performed with
values up to 100 randomly selected predictors et step. The initial test is done with
single 5-fold cross validation (not repeating).
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Figure 3 - First try at Random Forest, showing fmtéwh accuracy vs .
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Figure 4 -Tuning results from the Random Foresthiat The plot shows prediction accuracy using 5-
fold CV with 25 repeats against the tuning parametiey.



As shown in the initial test of RF in Figure 3, thexformance is not drastically affected
by the number of randomly selected variables, imowever the accuracy deteriorates if
My IS above 15 predictors. This value correspondsroxapately to Breimans
suggestion [10] of setting ipto the square root of P (~23). The lack of improeat
with higher my, i.e. including more data, could be related to kigh degree of
correlation between the predictors in this dataldetvever, according to [7] , this lack
of sensitivity to ngy is a commonly seen result.

A more extensive test of RF, using a higher nundfeZV folds and repeats, is
shown in Figure 4. The optimal number of prediciareach iteration appears to be 15.
The difference in accuracy between the tested ebBa€ tuning parameter is not large.
It is important to note again, as discussed inieecd.1, that the CV based accuracy
estimates are only intended for parameter tuningd,raust not be taken as estimates of
method accuracy.

Kuhn et.al. recommends at least 1000 trees to && insRF, but that would take
some ~10 days to compute with a reasonable amduwrbss validation (CV), say 25
repeats of 5-fold CV, for this data se, hence A9 trees are used here.

4.4 XGBoost

The next method is XGBoost. The R implementatiothed method is taken from [13].

This implementation is efficiently parallelized whi provides fast computation. The
gradual stepping up in complexity is therefore netessary. Instead, a full run with a
default tuning grid is executed immediately.
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Figure 5 - Shows tuning results for XGBoost. Fas thethod there are 4 tuning parameters. The figure
consist of four sub-plots, each representing paeicsettings for eta and colsample parametersstihe
plots shows the maximum allowed tree-depth on bséca and the prediction accuracy calculated from 5
fold CV repeated 25 times on the ordinate axishEamb-plot have three graphs, one for each ofrtet

tested settings of boosting iterations (50, 100 E5@).



Despite using a higher number of tuning parametesylting in several times more
runs then previous algorithms, XGBoost finishes4nhours. A higher number of boost
iterations is also used here, from 50 to 150. Tifieiency of this implementation is
further evidenced by the CPU load holding stead30& throughout the computation.

As shown by Figure 5, the tuning grid includes atwoins over the typical
training parameters for XGboost. Te@ andcolsample parameters have little effect on
the model accuracy. Theta setting controls the learning rate of the algonitiy
scaling the contribution of each new tree. Thisample bytree setting determines the
ratio of predictors that are used for each new ge¢ed tree. For a tree-depth of 1 there
IS some observable improvement by increasing eta 0.3 to 0,4 but for higher tree-
depths there is no difference for either of thess parameters.

Max Tree Depth and boost iterations are more ingmbrtin all cases, the
accuracy is in the range 95-99%. These result$oamed using 5-fold cross validation
repeated 25 times. As discussed in section 3.1d@3% not give independent sub-sets
of the data used here. Hence the accuracy estimate®nly be used for parameter
tuning and does not represent accurate predictibtiee method accuracy.

45 C50

C5.0 results are only used as a reference methdddondom Forest and XGBoost. As
such, detailed discussion of the tuning for C5.0haé$ included here. However, the
method was tuned using a similar approach to thegemted for Random Forest and
XGBoost. The results of tuning hyper parametersvsti@mt 30 boosting iterations is a
good choice. Further, there is no significant iny@erent by application of winnowing.

4.6  Method accuracy estimated on independent test set

The cross-validation (CV) results produce modelmtéon accuracies close to 100%.
As discussed in section 3.1, the time-series dathis set is not well suited for CV;

hence these estimates are not good predictions cafeimaccuracy. When drawing

training samples randomly using CV it is highlydik that the same subject performing
the same activity will end up in several folds. €equently, the folds of CV are not
truly independent. In order to accurately assessitbthods ability to predict new data,
an independent test set is needed.

For each method in the subsequent sections, a sionfumatrix showing the
classification results with both estimated and nexiee class is given. Additionally the
sensitivity and specificity for each class is daie a separate table. Discussion of the
results is deferred to section 5. For all confusiatrices the predicted class is shown in
the row direction while the reference class is shawthe column direction

4.7 Random Forest on test set

The best hyper-parameter tuning for Random Fores previously found to be 30
boosting trials without winnowing.



Table 1 - Confusion matrix Random Forest on theges

Walking WalkUp  WalkDown  Sitting Standing Laying

Walking 481 30 20 0 0 0
WalkUp 4 435 45 0 0 0
WalkDown 11 6 355 0 0 0
Sitting 0 0 0 446 26 0
Standing 0 0 0 45 506 0
Laying 0 0 0 0 0 537
Table 2 - Sensitivity and specificity for Randonré&st on the test set

Walking WalkUp WalkDown  Sitting Standing Laying
Sensitivity 97.0 92.4 84.5 90.8 95.1 100.0
Specificity 98.0 98.0 99.3 98.9 98.1 100.0

The classification accuracy on the test set is dotanbe 93.7% for the Random Forest
model. The confusion matrix is shown in Talilend the sensitivity and specificity is
shown in Table2.

4.8 XGBoost on test set

The best hyper-parameter tuning for XGBoost wasipusly found to be 150 boosting
iterations with a max tree depth of 3.

Table 3 - Confusion matrix XGBoost on the test set

Walking WalkUp WalkDown Sitting Standing Laying
Walking 490 31 6 0 0 0
WalkUp 6 433 23 2 0 0
WalkDown 0 6 391 0 0 0
Sitting 0 1 0 431 26 0
Standing 0 0 0 58 506 0
Laying 0 0 0 0 0 537

Table 4 - Sensitivity and specificity for XGBoost the test set

Walking WalkUp WalkDown  Sitting Standing Laying
Sensitivity 98.8 91.9 93.1 87.8 95.1 100.0
Specificity 98.5 98.8 99.8 98.9 97.6 100.0

The classification accuracy on test set is founthe¢094.6% for the XGBoost model,
which is a good result. The confusion matrix isvehaon Table 3 and the sensitivity and
specificity is shown in Table 4.

4.9  Comparing methods

The sensitivity scores presented for each methaldemprevious sub-chapters show how
well each of the methods is able to classify thangxes in the test set. It is now of
interest to compare them in tabulated form, ineglgdhe results from the original paper.
The same training and test sets are used here [3].



Table 5 - Comparing accuracy in percent for diffémaethods and activity classes

Walking Walk Walk Sitting Standing Laying Overall
Up Down

C5.0 trees 93.8 915 883 815 91.0 1000 91.2
(boosted)

C5.0 rules 970 964 919 870 80.7 1000 937
(boosted)

RF

(hiahy tuneq) | €70 924 845 008 951 1000 937
XGBoost

by tuned) | 988 819 931 878 951  100.0 94.6
SVM 956  69.8 832 964 930 1000  90.2
(From [3])

From Table 5 we may conclude that the results iandas to those of [3]. The overall
accuracy is computed as a weighted sum over all égamples. As mentioned
previously, the XGBoost method performs slightlytbethen Random Forest and rule-
based C5.0.

An interesting observation from e.g. Table 3 istttieere are three disjunct
groups of activities where there are no miss-digssions between these groups. The
first group consists of the three walking actistievhich are separate from the other
three stationary activities. This is expected basedhe results from PCA, where the
first PC clearly shows that these two types ofvaads, i.e. walking/dynamic vs
stationary, can be separated by only one PC. Rurthe activity laying also has no
sample misclassifications. This can likely be tchéack to the angle of gravitation
predictor, since the laying activity is distincthfferent in this respect compared to the
other five classes of activities

5 Discussion and conclusion

The process of identifying human activity basedsmonple accelerometer and gyroscope
data has been the goal of the present researate Bia data is difficult to analyze using
physical models, machine learning methods [7] veg@ied.

In this investigation we used techniques based brb,CRandom Forest and
XGBoost. These methods were used to classify #éiesvisuch as walking, walking
downstairs, walking upstairs, sitting, standing &dng

To remedy the challenges of cross-validation (Clgukssed in section 3.1, a
full test set was used to estimate the methodsracguThe data set contains a random
selection of 30% of the test subjects in a sepatata set. This is used for estimating
the prediction accuracy of all four applied methods

From the correlation plot in Figure 1 it appearat tthere are three main groups
of variables. This matches well with the confusioatrices from both methods, which
show that the laying activity is distinct from tbther five to such a degree that it can be
~100% classified with only one split of the data,equivalently one rule for the rule-
based models. Further, the dynamic activities, walking, are different from the
stationary activities of standing, sitting and fayi This is also shown by application of
PCA in Figure 2 Here the first principal componé&niused to separate dynamic and
stationary activities.



The best results on the independent test set ared favith XGBoost ifround =
150, max_depth = 3). This method shows a prediction accuracy of.6%. Random
Forest (try = 15) and C5.0 rulestr{als = 30) show equal prediction accuracy of
~93.6%, while C5.0 tree based (trials = 30) is beéhthe other three at 91.2%. It is
somewhat unexpected that C5.0 with rules outpedo@8.0 with trees by 3pp. This
could be related to improved generalization in thée-based model, since these
accuracy estimates are taken using an indepeneisrddt.

The sensitivity ratings for all classes and mod#iew some class dependent
variation between the four methods. For exampleyd@m Forest has a slightly better
sensitivity to the sitting activity compared to XGd&st, even though the overall
accuracy for XGBoost is better.

The results achieved here with XGBoost are sigaifily better than the SVM
results published in [3]. The main increase in aacy comes from the tree-ensemble
methods used here being able to separate the Davensliass better then the SVM. The
improvement in classification of the dynamic adtes is significant. For the stationary
activities, the methods are similar. The XGBoogbathm performs the best overall.

For all methods, we find three groups of activityasses in the confusion
matrices. The dynamic activities of walking, wallkidownstairs and walking upstairs
form one group. Stationary vertical activities, istanding and sitting, form a second
group, while laying constitutes the third group.thih each group there is a near 100%
classification success rate, indicating that thésee groups of activities are distinctly
separable by all the applied methods. The difficidtseparating activities within each
group. In particular, based on specificity and gesity values, it is difficult to separate
standing and sitting. However, also these actwisieow a sensitivity of around 90% for
the XGBoost method.

The results of this project show promise in clasation of human activities
based on inertial sensor data. The classificatioccess rate is 94.6% for the best
method, which is a large improvement over publis&&M results [3]. For such a
strong claim to be justified, the evidence of thigcess rate should be substantial.
Based on the test set validation using differest $eibjects to record training and test
data, the estimated prediction accuracy is consitléo generalize, i.e. it accurately
represents the prediction of new samples.

6 Suggestions on Future Sudies

The ideal scenario for most applications of mach&aening is to use a three-way split
of data into training, validation and test sets.this way the data set from separate
subjects could be used for all three phases of haelelopment, training of model,
tuning of parameters, and testing of the final itesit would be of interest to verify that
the model tuning results presented here are indpgghal also when an independent set
of samples is used to measure the accuracy of eachination of hyper parameter
values.

Another interesting possibility is improving the pseation of body and
gravitational acceleration vectors. This is achtewath a Butterworth filter in [2]. It is
reasonable to assume that the performance couldgyeved using e.g. a sensor fusion
model and a Kalman filter [14]. A reduced form d¢iist method is often called a
complimentary filter. The method integrates theoggope signal and uses a high-pass
filter to eliminate integral drift. A low-pass fdt with an identical cut-off frequency to
the high-pass filter is applied to the acceleroméebefore both filtered outputs are
summed together. This method could possibly retagme dynamic information from
the raw data, compared with the Butterworth filipplied in the original article [5].
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