
This paper is submitted to the NIK 2015 conference. For more information see
http://www.nik.no/

A full parallel Quicksort algorithm for multicore processors
Arne Maus,

Dept. of Informatics, University of Oslo
arnem@ifi.uio.no

Abstract
The problem addressed in this paper is that we want to sort an integer array a[]
of length n in parallel on a multi core machine with p cores using Quicksort. Amdahl’s
law tells us that the inherent sequential part of any algorithm will in the end dominate
and limit the speedup we get from parallelisation. This paper introduces ParaQuick, a
full parallel quicksort algorithm for use on an ordinary shared memory multi core
machine that has just a few simple statements in its sequential part. It can be seen as an
improvement over traditional parallelization of the Quicksort algorithm, where one
follows the sequential algorithm and substitute recursive calls with the creation of
parallel threads for these calls in the top of the recursion tree. The ParaQuick algorithm,
starts with k parallel threads, where k is a multiple of p (here k = 8*p) in a k way
partition of the original array with the same pivot value, and hence we get 2k partitioned
areas in the first pass. We then calculate where the pivot index, the division between the
small and large elements if this had been ordinary sequential Quicksort partition. In full
parallel we then swap all small elements to the right of this pivot index with the large
elements to the left of this pivot index – these two ‘displaced’ sets are by definition of
equal size. We can then recursively with half of the threads now do the left part, and
with the other half of the threads the right part (more details and synchronization
considerations in the paper). Finally, when there is only one thread left working on one
such area, sequential Quicksort and Insertionsort are used, as in the traditional way of
doing parallel Quicksort. In the last part of the paper, this new algorithm is empirically
tested against two other algorithms and Arrays.sort from the Java library. Five different
distributions of the numbers to be sorted end three different machines with p = 2(4
hyper threaded), 4(8) and 32(64) are tested. Finally, conclusions are presented and an
explanation is given why this ParaQuick algorithm for large values of n and some
distributions is so much faster than a traditional parallelisation.

Keywords: Quicksort, Full parallel algorithm, parallel sorting, multicore.

Introduction
The chip manufacturers cannot deliver what we really want, which is ever faster
processors. The heat generated increases with the clock frequency, and will make
the chip malfunction and eventually melt above 4 GHz with today’s technology.
Instead they now sell us multi core processors with 2-16 processor cores, but more
special products with 50 to100 cores are also available [2, 22], and the race for
more processing cores on a chip doesn’t stop there. The Intel Xeon Phi processor
with its fast, unconventional memory access and 61 cores is promising [2]. Each
of these cores has the processing power of the single CPUs sold some years ago.
Many of these cores, but not all, are hyperthreaded, where some of the circuitry is
duplicated such that each core can switch between two threads within a few
instruction cycles if the active thread is waiting for some event like access to main
memory. Also, we see today servers with up to 4 such hyperthreaded multi cores
processors, meaning that up to 64 threads can run in parallel. We use one of these
servers in this paper. The conclusion to all this parallelism is that if we faster
programs, we must make parallel algorithms for exploiting these new machines.

mailto:arnem@ifi.uio.no

The problem addressed in this paper is that we want to sort an integer
array a[]of length n on a shared memory machine with p cores. We assume
no prior knowledge of the distribution or the maximum value of the keys in a[].
This paper presents ParaQuick, a new full parallel version of Quicksort [1] which
is demonstrated to be some 2-5 times faster than the standard Java sorting method
Arrays.sort, which is an optimized sequential implementation of Quicksort with 2
partitioning elements in each step [8] and is faster than the standard way of
implementing sequential Quicksort. The ParaQuick algorithm addresses the
limitations posed to us by Amdahl’s law [3] that basically says that any sequential
part of an algorithm will sooner or later dominate the execution time of the
parallel algorithm, thus limiting the speedup we can get with increased
parallelism. ParaQuick does this by having only a few sequential statement before
going full parallel with all k threads to sort a[]. By full parallel we mean that all
threads start working as soon as the ParaQuick method is called, and load
balancing is done such that all threads will work at full speed with (almost) the
same amount of keys to sort until all sorting is done. Waiting in ParaQuick occur
at 4 synchronization points where all threads have to wait on a barrier for the other
threads to get equally far in their code. None of the loops, arrays segments etc. in
the threads are longer than n/k. In theory then, with p cores, we could hope for a
speedup close to p. As suggested by one anonymous referee, if we overbook the
number of threads by a factor > 1 compared with the available cores, it would
give a better performance for ParaQuick. We overbook by a factor 8 here.

Parallel sorting algorithms are abundant [5,12,14,15,23,25]. As with
sequential sorting, we can distinguish between comparison based methods, where
the values of two (or more) keys are compared to do the sorting; and content
based methods, where the value of some bits in a single key determines where it
will be sorted. Most work has been done on parallel comparison based algorithms.
We find first of all a set of algorithms for special purpose network machines, but
also for grids of more ordinary machines [5,6,8,9,25]. The Hyperquick algorithm
for a hypercube of connected machines resembles some, but not all of the
ParaQuick algorithm presented in this paper[18].

In addition most textbooks on parallel computations, present algorithm
following the theoretical PRAM model [5,23] of a computer. In PRAM one
assumes that: i) access to any location takes the same unit of time, and ii) that we
have as many cores available as one needs – often n cores. Both assumptions are
utterly wrong. In today’s multicore computer, the different between accessing data
in the registers or in cache level 1 versus in main memory is a factor of 200, and
between computers in a cluster there is a factor of at least 10 000. In addition, the
number of cores is always limited; on a single computer it is 2-100, not n, and
even in a cluster it is still less than 106. These textbooks by obvious reasons never
produce actual performance figures. The most troublesome with the PRAM model
is that their assumptions do not produce the most efficient algorithms, in
particular the assumption of same access time to any part of data is damaging to
algorithm construction because often extra or copies of data and/or extra
operations are introduced to increase speed.

 Also relevant to this paper is bitonic sort [8,9,13,14], a variation of the
comparison based merge sort; and sample sort, a generalization of Quicksort that
sort the keys into many buckets before sorting each bucket with ordinary
Quicksort [11,12, 25]. A number of the algorithms seems either to be of the

Quicksort type with a relative slow start (first sequential, then two parallel, four
parallel,..), or with a slow ending like merge and bitonic sort, where parallelism
decreases as longer, but fewer sequences are merged (the last step is two-parallel
in ordinary merge sort). To the best of my knowledge, the algorithm presented in
this paper has not been presented in the literature.

The rest of this paper is organised as follows. In section 2 the fully parallel
ParaQuick algorithm is defined. In section 3 the differences between the
ParaQuick and a traditional parallel quicksort algorithm are analysed to some
detail. In section 4, tests comparing ParaQuick with three other algorithms on
three different machines with from 64 to 4 cores, and for 5 different distributions
of numbers to be sorted, are presented. The results from these tests are analysed in
section 5 and in section 6 the paper is concluded.

2. The full parallel algorithm ParaQuick defined
With p cores at our disposal, we for performance start k =8*p threads. The first
operation in ParaQuick is to divide the array a[] into k (almost) equally sized
segments (Fig.1). Then the k threads are started. Let m = a.length/2, they all
calculate the same pivot value with the use of Insertionsort on the same three
elements a[m-1],a[m],a[m+1]; then picking the middle one as the common
pivot value. All threads then synchronize (Fig. 2) and each thread sorts its own
part of length n/k. These segments are then partioned by the ordinary Quicksort
partition algorithm (Appendix A).

Figure 1. Partition of a[] into k segment, with a number of ‘smaller’ and ‘bigger’ than the

common Pivot value.

Figure 2. Parallel swapping of all ‘big’ element in a[] to the right of the Pivot Index with the

same number of ‘small’ element to the left.

Many large elements are now to the left of the Pivot index – which can be
calculated as the sum of all k ‘small’ segments. The algorithm then swaps in

parallel these displaced elements of a[] with small element to the right of this
Pivot index. These two ‘displaced’ sets are by definition of equal size. We then
synchronise on a Barrier and end up with a single partitioned array with one part
that is smaller than the pivot value, and a right part that have elements that are
bigger (Fig. 3) .

We see that this swapping is an overhead, extra operations that are not
performed by the ordinary parallelization of Quicksort. On the other hand, we
have now completely removed the top of the recursion tree together with its
sequential code and low level parallelism.

An additional overhead of any parallel algorithm is the creation of threads to
make this parallelism happen. The first thread started in Java costs approximately
2 to 3 milliseconds, but subsequent calls to the new Thread operation are much
faster due to JIT (Just In Time) compilation of the running code. The results
presented here are the average over many executions of sorting an array of the
same length. Only when n = 109, the running time for a single run is presented.

Figure 3. The ParaQuick algorithm and its synchronisation.

But since a sequential algorithm can sort 50 000 numbers in 2-4 milliseconds,

we cannot expect any parallel algorithm to outperform a sequential algorithm for
any n less than 100 000.

We will in the following section empirically investigate how the ParaQuick
compares with: a) The highly tuned Arrays.sort, b) A straight forward sequential
Quicksort, and c) A traditionally crafted parallel Quicksort: TradParaQuick where
one follows the sequential algorithm and substitute recursive calls with the
creation of parallel threads for these calls in the top of the recursion tree for any
section to sort longer than 50 000 elements. Data is first then sequentially split in
two separate parts, each part gets a thread and we can then continue in 2-parallel.
Then again each part of data is split in two, and we get a 4 parallel program, then

8-parallel. After this parallelization, which has too much sequential and too
restricted parallelisation, each thread then finally uses sequential quicksort on its
part of the array when its length is shorter than say 50 000.

3. The difference between the TradParaQuick and the
ParaQuick algorithms analysed.
Assume that we have p cores. In TradParaQuick we first do sequentially n reads
and n/4 swaps; at the next level it is 2-parallel. Time wise it then does n/2 reads
and n/8 swaps, then n/4 reads and n/16 swaps. Asymptotically this takes the same
time as doing 2n reads and n/2 swaps sequentially for the parallelisation phase.

The new ParaQuick does nothing of this, but does time wise n/(p*2) extra
swaps at the first level, then n/(p*4) extra swaps at the next level,.., until we get
down to one thread per segment. Asymptotically this is n/p extra swaps. In
addition ParaQuick does three synchronisations per level and one at the end
compared with one for TradParaQuick per level, and one at the end.

The reason that it pays in ParaQuick to use far more parallel threads than
cores, is probably that each thread then solves a smaller sub problem that fits
better, higher up in the caching hierarchy while there is almost no penalty in the
rest of the algorithm against doing this.

Theoretically, we then conclude that when p ≥ 2, the new algorithm
ParaQuick should be faster than TradParaQuick.

4. The test results
Apart from Arrays.sort, we note that the other three algorithms tested use
sequential partition of a segment and Insertionsort for large parts of their
algorithm. To assure fair comparison, the same code fragment for these algorithms
is used by all three algorithms, and is given in appendix A. All code are compiled
and run with Java 8. As with Arrays.sort, all three algorithms also use
Insertionsort if n < 32 and the two parallel ones do not start parallel sorting, but
use sequential Quicksort if n < 50 000.

We tested these 4 algorithms on three different machines, on new laptop with
2(4 hyperthreaded) cores, one workstation with 4(8) cores, and one server with
32(64) cores. We also tested 5 different distributions of the n randomly selected
numbers to be sorted: Uniform (0:n/10), Uniform(0:n), Uniform (0:1030) ,
Uniform (i%3) and Uniform (i%29) – the last two only having 3 and 29 possible
values – and thus many duplicates.

We note that Arrays.sort is a two-way optimized Quicksort and hence faster
than the simple sequential quicksort which we present as the starting point for
both TradParaQuick and ParaQuick. Since we present the speedup of the three
other algorithms as speedup versus Arrays.sort, this is not strictly correct. The
speedup of the two parallel algorithms are actually better than given in the
following figures, since it should have been calculated compared with a on an
average 20% slower algorithm than Arrays.sort. However, since there is no reason
to introduce a new sorting algorithm if it is not faster than the sorting algorithm in
the Java library, this speedup is used.

Time is measured with the Java system call: System.nanoTime(). We
first now present the speedup for each of the 3 machines with all the 5
distributions.

Since all execution times are presented relative to Arrays.sort for the same
length of the array, it might be interesting to know what the absolute execution
times are. In Table 1 the execution time for the various machines are given for
sorting 100 million integers with Arrays.sort.

Time to sort 100million 32 bit integer keys from the U(0:n-1)
distribution with Arrays.sort() – a sequential two way quicksort:

 Millisec.
 2(4) core Intel i7-4600U, 2,1-2,7GHz 10757

 4(8) core Intel i7-870, 3Ghz 10477
 32(64) core Xeon L7555 1.87GHz 14722

Table 1. Time to sort 100 million 32 bit integers with Arrays.sort on the three
machines used. We see that, the sequential performance ratios between the three

 machines are less than 1 to 1,5.

Figure 4. Speedup on a laptop with 2(4) cores, 32 threads
(max speedup for n=1000 out of graph is 11)

Figure 5. Speedup for 5 distributions on a 4(8) core
 Workstation, 64 threads .

Figure 6. Speedup for 5 distributions on a 32(64) core server, 256 threads

To clarify points that we will make in the next section, we now present two
speedup figures for all three algorithms with the two the most frequently used
distributions in the sorting literature, the U(0:n-1) and U(0: 230) on the same 4(8)
core workstation.

Figure 7. Speedup for 3 algorithms with the U(0:n-1) distribution
on a 4(8) core workstation.

Figure 8. Speedup for 3 algorithms with the U(0:1030) distribution
 on a 4(8) core workstation.

Since we have overbooked the number of threads with respect to the number of
cores, this is illustrated in the last figure below where we vary the number of
threads on the 4(8) core workstation for the U(0:n-1) distribution.

Figure 9. Speedup as a function of number of parallel threads p used on
 a 4(8) core workstation for the U(0:n-1) distribution.

5. Analysis of the test results
We see in Figures 3 through 8 that for large n > 106, ParaQuick is much faster
than a traditional parallelised quicksort on three machines tested. Figures 4 to 6
demonstrate that speedup increases with p, the number of cores. These empirical
findings support the more theoretical analysis that the overhead of ParaQuick
decreases with p, the level of parallelism, as it also is intuitively correct. We do
not swap more displaced elements as p increases – on the contrary, we do this in
parallel so that the execution time of this extra swapping decreases as p increases.

We also see that overbooking the parallelism by using more threads than the
number of cores as demonstrated in Figure 9 is advantageous, but of course there
is a limit to useful overbooking, and p = 8*k seems a reasonable choice.

The actual Java code for ParaQuick will be posted on my sorting homepage
[24] for free download together with this paper.

6. Conclusion
I have presented a new algorithm ParaQuick that sorts significantly faster than the
standard sequential Quicksort and a traditionally parallelised Quicksort on a
shared memory computer with more than one core when n ≥ 106 where sorting
times matters most.

Bibliography
[1] C.A.R Hoare : Quicksort, Computer Journal vol. 5(1962), 10-15
[2] http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
[3] http://en.wikipedia.org/wiki/Amdahl%27s_law

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://en.wikipedia.org/wiki/Amdahl%27s_law

[4] M.J. Quinn: Analysis and benchmarking of two parallel sorting algorithms:
 Hyperquick and Quickmerge, BIT 29(1989), 239-250
[5] J. JaJa, Introduction to Parallel Algorithms, Addison–Wesley, Reading, MA, 1992.
[6] Frank Thomson Leighton, Introduction to Parallel Algorithms and Architectures:

Arrays, Trees, Hypercubes, Morgan Kaufmann Pub, Sept. 1991, ISBN:9781558601178
[7] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel models of

computation , Journal of Computer and System Sciences, Volume 30, Issue 1, February
1985 , Pages 130-145

[8] Black, Paul E. "Multikey Quicksort". Dictionary of Algorithms and Data Structures.
 NIST.
[9]. K. E. Batcher, Sorting networks and their applications, Proc. AFIPS Conference,

1968,pp. 307–314.
[10] Y. C. Kim, M. Jeon, D. Kim, and A. Sohn, Communication-efficient bitonic sort on a

distributed memory parallel computer, Proc. International Conference on Parallel and
Distributed Systems,ICPADS’2001, Kyongju, Korea, June 26–29, 2001.

[11]. D. R. Helman, D. A. Bader, and J. JaJa, Parallel algorithms for personalized
communication and sorting with an experimental study, Proc. ACM Symposium on
Parallel Algorithms and Architectures, Padua, Italy, 1996, pp. 211–220.

[12] J. S. Huang and Y. C. Chow, Parallel sorting and data partitioning by sampling,
Proc. the 7th Computer Software and Applications Conference, 1983, pp. 627–631.

[13] J.-D. Lee and K. E. Batcher, Minimizing communication in the bitonic sort, IEEE
Trans. Parallel Distrib. Systems 11(5) (2000), pp.459–474.

[14] Zhaofang Wen, Multiway Merging in Parallel, IEEE Transactions on Parallel and
Distributed Systems Volume 7, Issue 1, January 1996

[15] Amato et al : A Comparison of Parallel Sorting Algorithms on Different
 Architectures, Technical Report 98-029, Department of Computer Science, Texas

A&M University, College Station, January 1996
 [16] Jon Bentley, Programming Pearls, Second Edition, Addison-Wesley, 2000. ISBN

0-201-65788-0.
[17] Donald Knuth, The Art of Computer Programming, Volume 3: Sorting and

Searching, Second Edition. Addison-Wesley, 1998.
[18] P. Tsigas, Y. Zhang, A Simple, Fast Parallel Implementation of Quicksort And Its
 Performance Evaluation on SUN Enterprise 10000 (2003), ELEVENTH EUROMICRO
 CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING
[19]S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms.

 11th ACM Symposium of Discrete Algorithms, pages 829–838, 2000.
[20] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using

registers and caches. ACM Journal of Experimental Algorithmics, 7(9), 2002
[21] LaMarca, A.; Ladner, R. E. (1997). "The influence of caches on the performance of
 sorting". Proc. 8th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA97): 370–379.
[22] (Tile-GX 100 core) http://www.Tilera.com
[23] R.E. Neapolitan, Foundations of Algoriths, Joanes&Bartlett Learning, fifth ed. 2015
[24] Arne Maus‘ sorting homepage at: http://arnem.at.ifi.uio.no/sorting/
[25] David R. Cheng, Alan Edelman, John R. Gilbert, and Viral Shah. A novel parallel

sorting algorithm for contemporary architectures. Submitted to ALENEX06, 2006

http://www.nist.gov/dads/HTML/multikeyQuicksort.html
https://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://www.tilera.com/
http://arnem.at.ifi.uio.no/sorting/

Appendix A – The sequentialQsort (sub) algorithm
employed in algorithms defined in this paper.

static void sequentialQsort (int[] a, int left, int right) {
 // sort a[left..right],try skipping equal elements in the middle
 if (right-left < INSERT_MAX) insertSort (a,left,right); // = 32
 else {int i =left, j =right,t;
 int part = a[(left+right)/2];
 while (i <= j) {
 while (a[i] < part) i++;
 while (a[j] > part) j--;

 if (i <= j) {
 t = a[j];
 a[j]= a[i];
 a[i]= t;
 i++;
 j--;
 }
 } // end while

 while (j > left && a[j] == part) j--;
 while (i < right && a[i] == part) i++;

 if (j-left > 0) sequentialQsort (a,left,j);
 if (right-i > 0) sequentialQsort (a,i,right);
 }
} // end quickSortSek

public static void insertSort (int a[], int left, int right) {
 int i,k,t;

 for (k = left+1 ; k <= right; k++) {
 t = a[k] ;
 i = k;

 while (a[i-1] > t) {
 a[i] = a[i-1];
 if (--i == left) break;
 }
 a[i] = t;
 } // end k
} // end insertSort

	Introduction
	2. The full parallel algorithm ParaQuick defined
	3. The difference between the TradParaQuick and the ParaQuick algorithms analysed.

	4. The test results
	5. Analysis of the test results
	6. Conclusion
	Bibliography
	Appendix A – The sequentialQsort (sub) algorithm employed in algorithms defined in this paper.

