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Abstract 
The problem addressed in this paper is that we want to sort an integer array a[] 
of length n in parallel on a multi core machine with p cores using Quicksort. Amdahl’s 
law tells us that the inherent sequential part of any algorithm will in the end dominate 
and limit the speedup we get from parallelisation. This paper introduces ParaQuick, a 
full parallel quicksort algorithm for use on an ordinary shared memory multi core 
machine that has just a few simple statements in its sequential part. It can be seen as an 
improvement over traditional parallelization of the Quicksort algorithm, where one 
follows the sequential algorithm and substitute recursive calls with the creation of 
parallel threads for these calls in the top of the recursion tree. The ParaQuick algorithm, 
starts with k parallel threads, where k is a multiple of p (here k = 8*p) in a k way 
partition of the original array with the same pivot value, and hence we get 2k partitioned 
areas in the first pass. We then calculate where the pivot index, the division between the 
small and large elements if this had been ordinary sequential Quicksort partition. In full 
parallel we then swap all small elements to the right of this pivot index with the large 
elements to the left of this pivot index – these two ‘displaced’ sets are by definition of 
equal size. We can then recursively with half of the threads now do the left part, and 
with the other half of the threads the right part (more details and synchronization 
considerations in the paper).  Finally, when there is only one thread left working on one 
such area, sequential Quicksort and Insertionsort are used, as in the traditional way of 
doing parallel Quicksort.  In the last part of the paper, this new algorithm is empirically 
tested against two other algorithms and Arrays.sort from the Java library. Five different 
distributions of the numbers to be sorted end three different machines with p = 2(4 
hyper threaded), 4(8) and 32(64) are tested.  Finally, conclusions are presented and an 
explanation is given why this ParaQuick algorithm for large values of n and some 
distributions is so much faster than a traditional parallelisation. 
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Introduction 
The chip manufacturers cannot deliver what we really want, which is ever faster 
processors. The heat generated increases with the clock frequency, and will make 
the chip malfunction and eventually melt above 4 GHz with today’s technology.  
Instead they now sell us multi core processors with 2-16 processor cores, but more 
special products with 50 to100 cores are also available [2, 22], and the race for 
more processing cores on a chip doesn’t stop there. The Intel Xeon Phi processor 
with its fast, unconventional memory access and 61 cores is promising [2]. Each 
of these cores has the processing power of the single CPUs sold some years ago. 
Many of these cores, but not all, are hyperthreaded, where some of the circuitry is 
duplicated such that each core can switch between two threads within a few 
instruction cycles if the active thread is waiting for some event like access to main 
memory. Also, we see today servers with up to 4 such hyperthreaded multi cores 
processors, meaning that up to 64 threads can run in parallel. We use one of these 
servers in this paper. The conclusion to all this parallelism is that if we faster 
programs, we must make parallel algorithms for exploiting these new machines. 
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The problem addressed in this paper is that we want to sort an integer 
array a[]of length n on a shared memory machine with p cores. We assume 
no prior knowledge of the distribution or the maximum value of the keys in a[]. 
This paper presents ParaQuick, a new full parallel version of Quicksort [1] which 
is  demonstrated to be some 2-5 times faster than the standard Java sorting method 
Arrays.sort, which is an optimized sequential implementation of Quicksort with 2 
partitioning elements in each step [8] and is faster than the standard way of 
implementing sequential Quicksort. The ParaQuick algorithm addresses the 
limitations posed to us by Amdahl’s law [3] that basically says that any sequential 
part of an algorithm will sooner or later dominate the execution time of the 
parallel algorithm, thus limiting the speedup we can get with increased 
parallelism.  ParaQuick does this by having only a few sequential statement before 
going full parallel with all k threads to sort a[]. By full parallel we mean that all 
threads start working as soon as the ParaQuick method is called, and load 
balancing is done such that all threads will work at full speed with (almost) the 
same amount of keys to sort until all sorting is done. Waiting in ParaQuick occur 
at 4 synchronization points where all threads have to wait on a barrier for the other 
threads to get equally far in their code. None of the loops, arrays segments etc. in 
the threads are longer than n/k. In theory then, with p cores, we could hope for a 
speedup close to p. As suggested by one anonymous referee, if we overbook the 
number of threads by a factor > 1 compared with the available cores, it would  
give a better performance for ParaQuick. We overbook by a factor 8 here. 

Parallel sorting algorithms are abundant [5,12,14,15,23,25]. As with 
sequential sorting, we can distinguish between comparison based methods, where 
the values of two (or more) keys are compared to do the sorting; and content 
based methods, where the value of some bits in a single key determines where it 
will be sorted. Most work has been done on parallel comparison based algorithms. 
We find first of all a set of algorithms for special purpose network machines, but 
also for grids of more ordinary machines [5,6,8,9,25]. The Hyperquick algorithm 
for a hypercube of connected machines resembles some, but not all of the 
ParaQuick algorithm presented in this paper[18]. 

In addition most textbooks on parallel computations, present algorithm 
following the theoretical PRAM model [5,23] of a computer. In PRAM one 
assumes that: i) access to any location takes the same unit of  time, and ii) that we 
have as many cores available as one needs – often n cores. Both assumptions are 
utterly wrong. In today’s multicore computer, the different between accessing data 
in  the registers or in cache level 1 versus in main memory is a factor of 200, and 
between computers in a cluster there is a factor of at least 10 000. In addition, the 
number of cores is always limited; on a single computer it is 2-100, not n, and 
even in a cluster it is still less than 106. These textbooks by obvious reasons never 
produce actual performance figures. The most troublesome with the PRAM model 
is that their assumptions do not produce the most efficient algorithms, in 
particular the assumption of same access time to any part of data is damaging to 
algorithm construction because often extra or copies of data and/or extra 
operations are introduced to increase speed. 

 Also relevant to this paper is bitonic sort [8,9,13,14], a variation of the 
comparison based merge sort; and sample sort, a generalization of Quicksort that 
sort the keys into many buckets before sorting each bucket with ordinary 
Quicksort [11,12, 25]. A number of the algorithms seems either to be of the 



Quicksort type with a relative slow start (first sequential, then two parallel, four 
parallel,..), or with a slow ending like merge and bitonic sort, where parallelism 
decreases as longer, but fewer sequences are merged (the last step is two-parallel 
in ordinary merge sort). To the best of my knowledge, the algorithm presented in 
this paper has not been presented in the literature. 

The rest of this paper is organised as follows. In section 2 the fully parallel 
ParaQuick algorithm is defined. In section 3 the differences between the 
ParaQuick and a traditional parallel quicksort algorithm are analysed to some 
detail. In section 4, tests comparing ParaQuick with three other algorithms on 
three different machines with from 64 to 4 cores, and for 5 different distributions 
of numbers to be sorted, are presented. The results from these tests are analysed in 
section 5 and in section 6 the paper is concluded.  

2. The full parallel algorithm ParaQuick defined  
With p cores at our disposal, we for performance start k =8*p threads. The first 
operation in ParaQuick is to divide the array a[] into k (almost) equally sized 
segments (Fig.1). Then the k threads are started. Let m = a.length/2, they all 
calculate the same pivot value with the use of Insertionsort on the same three 
elements a[m-1],a[m],a[m+1]; then picking the middle one as the common 
pivot value. All threads then synchronize (Fig. 2) and each thread sorts its own 
part of length n/k. These segments are then partioned by the ordinary Quicksort 
partition algorithm (Appendix A). 

 

 
Figure 1. Partition of  a[]  into k segment, with a  number of ‘smaller’ and ‘bigger’ than the 

common Pivot value. 
 

 
Figure 2. Parallel swapping of all ‘big’ element in a[] to the right of the Pivot Index with the 

same number of ‘small’ element to the left. 
 

Many large elements are now to the left of the Pivot index – which can be 
calculated as the sum of all k ‘small’ segments. The algorithm then swaps in 



parallel these displaced elements of a[] with small element to the right of this 
Pivot index. These two ‘displaced’ sets are by definition of equal size. We then 
synchronise on a Barrier and end up with a single partitioned array with one part 
that is smaller than the pivot value, and a right part that have elements that are 
bigger (Fig. 3) .  

We see that this swapping is an overhead, extra operations that are not 
performed by the ordinary parallelization of Quicksort. On the other hand, we 
have now completely removed the top of the recursion tree together with its 
sequential code and low level parallelism.  

An additional overhead of any parallel algorithm is the creation of threads to 
make this parallelism happen. The first thread started in Java costs approximately 
2 to 3 milliseconds, but subsequent calls to the new Thread operation are much 
faster due to JIT (Just In Time) compilation of the running code. The results 
presented here are the average over many executions of sorting an array of the 
same length. Only when n = 109, the running time for a single run is presented.                              
 

 

 
Figure 3. The ParaQuick algorithm and its synchronisation. 

 
But since a sequential algorithm can sort 50 000 numbers in 2-4 milliseconds, 

we cannot expect any parallel algorithm to outperform a sequential algorithm for 
any n less than 100 000.  

We will in the following section empirically investigate how the ParaQuick 
compares with: a) The highly tuned Arrays.sort, b) A straight forward sequential 
Quicksort, and c) A traditionally crafted parallel Quicksort: TradParaQuick where 
one follows the sequential algorithm and substitute recursive calls with the 
creation of parallel threads for these calls in the top of the recursion tree for any 
section to sort longer than 50 000 elements. Data is first then sequentially split in 
two separate parts, each part gets a thread and we can then continue in 2-parallel. 
Then again each part of data is split in two, and we get a 4 parallel program, then 



8-parallel. After this parallelization, which has too much sequential and too 
restricted parallelisation, each thread then finally uses sequential quicksort on its 
part of the array when its length is shorter than say 50 000. 

3. The difference between the TradParaQuick and the 
ParaQuick algorithms analysed. 
Assume that we have p cores. In TradParaQuick we first do sequentially n reads 
and n/4 swaps; at the next level it is 2-parallel. Time wise it then does n/2 reads 
and n/8 swaps, then n/4 reads and n/16 swaps. Asymptotically this takes the same 
time as doing 2n reads and n/2 swaps sequentially for the parallelisation phase.   

The new ParaQuick does nothing of this, but does time wise n/(p*2) extra 
swaps at the first level,  then n/(p*4) extra swaps at the next level,.., until we get 
down to one thread per segment. Asymptotically this is n/p extra swaps. In 
addition ParaQuick does three synchronisations per level and one at the end 
compared with one for TradParaQuick per level, and one at the end. 

The reason that it pays in ParaQuick to use far more parallel threads than 
cores, is probably that each thread then solves a smaller sub problem that fits 
better, higher up in the caching hierarchy while there is almost no penalty in the 
rest of the algorithm against doing this. 

Theoretically, we then conclude that when p ≥ 2, the new algorithm 
ParaQuick should be faster than TradParaQuick. 

4. The test results 
Apart from Arrays.sort, we note that the other three algorithms tested use 
sequential partition of a segment and Insertionsort for large parts of their 
algorithm. To assure fair comparison, the same code fragment for these algorithms 
is used by all three algorithms, and is given in appendix A. All code are compiled 
and run with Java 8. As with Arrays.sort, all three algorithms also use 
Insertionsort if n < 32 and the two parallel ones do not start parallel sorting, but 
use sequential Quicksort if n < 50 000.    

We tested these 4 algorithms on three different machines, on new laptop with 
2(4 hyperthreaded) cores, one workstation with 4(8) cores, and one server with 
32(64) cores. We also tested 5 different distributions of the n randomly selected 
numbers to be sorted: Uniform (0:n/10), Uniform(0:n), Uniform (0:1030) , 
Uniform (i%3) and Uniform (i%29) – the last two only having 3 and 29 possible 
values – and thus many duplicates. 

We note that Arrays.sort is a two-way optimized Quicksort and hence faster 
than the simple sequential quicksort which we present as the starting point for 
both TradParaQuick and ParaQuick. Since we present the speedup of the three 
other algorithms as speedup versus Arrays.sort, this is not strictly correct. The 
speedup of the two parallel algorithms are actually better than given in the 
following figures, since it should have been calculated compared with a on an 
average 20% slower algorithm than Arrays.sort. However, since there is no reason 
to introduce a new sorting algorithm if it is not faster than the sorting algorithm in 
the Java library, this speedup is used.  

Time is measured with the Java system call: System.nanoTime(). We 
first now present the speedup for each of the 3 machines with all the 5 
distributions. 



Since all execution times are presented relative to Arrays.sort for the same 
length of the array, it might be interesting to know what the absolute execution 
times are. In Table 1 the execution time for the various machines are given for 
sorting 100 million integers with Arrays.sort.  
 

Time to sort 100million  32 bit integer keys  from the U(0:n-1)  
distribution with Arrays.sort() – a sequential two way  quicksort: 

 

                                                                           Millisec. 
 2(4) core Intel i7-4600U, 2,1-2,7GHz 10757 

  4(8) core Intel i7-870, 3Ghz 10477 
  32(64) core Xeon L7555 1.87GHz 14722 
  

  

 
 

Table 1. Time to sort 100 million 32 bit integers with Arrays.sort on the three  
machines used. We see that, the sequential performance ratios between the three 

 machines are less than 1 to 1,5. 
 

 
 

Figure 4. Speedup on a laptop with 2(4) cores, 32 threads  
(max speedup for n=1000 out of graph is 11) 

 

 
 

Figure 5. Speedup for 5 distributions on a 4(8) core 
 Workstation, 64 threads . 

 



 
 

Figure 6. Speedup for 5 distributions on a 32(64) core server, 256 threads 
 

To clarify points that we will make in the next section, we now present two 
speedup figures for all three algorithms with the two the most frequently used 
distributions in the sorting literature, the U(0:n-1) and U(0: 230) on the same 4(8) 
core workstation. 

 
 

Figure 7. Speedup for 3 algorithms with the U(0:n-1) distribution   
on a 4(8) core workstation. 

 

 
 

Figure 8. Speedup for 3 algorithms with the U(0:1030 ) distribution  
 on a 4(8) core workstation. 

 



Since we have overbooked the number of threads with respect to the number of 
cores, this is illustrated in the last figure below where we vary the number of 
threads on the 4(8) core workstation for the U(0:n-1) distribution. 
 

 
 

Figure 9. Speedup as a function of number of parallel threads p used on 
 a 4(8) core workstation for the U(0:n-1) distribution. 

5. Analysis of the test results 
We see in Figures 3 through 8 that for large n > 106, ParaQuick is much faster 
than a traditional parallelised quicksort on three machines tested. Figures 4 to 6 
demonstrate that speedup increases with p, the number of cores. These empirical 
findings support the more theoretical analysis that the overhead of ParaQuick 
decreases with p, the level of parallelism, as it also is intuitively correct. We do 
not swap more displaced elements as p increases – on the contrary, we do this in 
parallel so that the execution time of this extra swapping decreases as p increases.  

We also see that overbooking the parallelism by using more threads than the 
number of cores as demonstrated in Figure 9 is advantageous, but of course there 
is a limit to useful overbooking, and p = 8*k seems a reasonable choice.  

The actual Java code for ParaQuick will be posted on my sorting homepage 
[24] for free download together with this paper. 

6. Conclusion 
I have presented a new algorithm ParaQuick that sorts significantly faster than the 
standard sequential Quicksort and a traditionally parallelised Quicksort on a 
shared memory computer with more than one core when n ≥ 106  where sorting 
times matters most.  
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Appendix A – The sequentialQsort (sub) algorithm 
employed  in  algorithms defined in this paper. 
 
static void  sequentialQsort (int[] a, int left, int right) { 
   // sort a[left..right],try skipping equal elements in the middle 
   if (right-left < INSERT_MAX) insertSort (a,left,right); // = 32 
   else {int i =left, j =right,t; 
    int part = a[(left+right)/2];      
         while ( i <= j) { 
         while (a[i] < part ) i++; 
         while (a[j] > part ) j--; 
 
         if (i <= j) { 
      t = a[j]; 
      a[j]= a[i]; 
      a[i]= t; 
      i++; 
      j--; 
         } 
      } // end while 
 
      while (j > left  && a[j] == part)  j--;   
      while (i < right && a[i] == part)  i++;  

 
      if  ( j-left > 0)  sequentialQsort (a,left,j); 
      if  ( right-i > 0) sequentialQsort (a,i,right); 
    }  
} // end quickSortSek 

 
public static void insertSort (int a[], int left, int right) { 
 int i,k,t; 
 
 for (k = left+1 ; k <= right; k++) { 
  t = a[k] ; 
  i = k; 
 
  while ( a[i-1]  > t ) { 
    a[i] = a[i-1]; 
    if (--i == left) break; 
  } 
  a[i] = t; 
  } // end k 
} // end insertSort 
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