
Towards a Multi Metamodelling Approach for Developing
Distributed Healthcare Applications

Fazle Rabbi1,2, Yngve lamo1, Ingrid Chieh Yu2,
Lars Michael Kristensen1

1 Bergen University College, Bergen, Norway
fra@hib.no, yla@hib.no, lmkr@hib.no
2 University Of Oslo, Oslo, Norway

fazlr@student.matnat.uio.no, ingridcy@ifi.uio.no

Abstract
Model Driven Engineering (MDE) uses formal methods to build
mathematically rigorous models of complex systems. Metamodelling
plays an important role in MDE as it is used to specify domain specific
modelling languages. However, the potential of metamodelling has
not been fully explored. Current approaches of MDE are often at a low
level of abstraction and lack domain concepts for specifying behavior.
In previous work, we proposed a multi metamodelling approach
that captures the complexity of systems by using a metamodelling
hierarchy, built from individually defined metamodels, each capturing
different aspects of a healthcare domain. In this paper, we focus on
modelling distributed healthcare applications and present an example
from the healthcare domain. We address certain modelling aspects
related to distributed applications such as process modelling, using
message passing communication, and coordination of processes and
resources.

1 Introduction
Healthcare systems are complex in many dimentions as there are many resources
involved that need to be coordinated and in most cases the processes in
a healthcare applications are safety critical. Typically a healthcare system
consist of many different applications providing a wide range of services.
Coordinations among these applications are very important for delivering high
quality healthcare. However, in many situations the coordination is performed
manually which is not scalable and which can be improved by integrating
applications. In this paper, we study a formal approach for metamodelling of
distributed healthcare applications. Since hospitals operate on different settings
and platforms, a single model or modelling language is not well-suited to
fit all aspects of the modelling requirements. We therefore propose the use

This paper was presented at the NIK-2015 conference; see http://www.nik.no/.

of multi metamodelling which supports the development of domain specific
modelling languages to accomodate different situations. As an example we
discuss the modelling of a blood transfusion application that we are developing
in collaboration with Helse Bergen and Helse Vest IKT. The goal of the project
is to develop an application for safe blood transfusion. We are modelling the
process flow and developing the data models as well as modelling the interaction
between different subsystems.

Hospitals in developed countries are taking initiative to use handheld devices
targetting increased use of information and communication technology into
healthcare processes. The use of handheld devices allow caregivers to interact
with systems while they are beside a hospital bed providing care to patients. In
general, a blood transfusion application running on a handheld device need to
communicate with different systems such as the Electronic Health Record (EHR),
the laboratory system, and the blood bank. Figure 1 shows a screenshot of a blood
transfusion application and its collaboration with other healthcare systems. It is
very common that these systems are provided by different vendors and they are
not necessarily built on a common data model. The modelling and simulation of
a blood transfusion application therefore requires to facilitate the modelling and
integration of heterogeneous applications. Multi metamodelling has the potential
to deal with this modelling requirement.

Blood Transfusion
Application

WWW

EHR
Blood
Bank

Lab
SystemBloodApp

Server

Figure 1: A screenshot of a blood transfusion application and its collaboration
with other heathcare systems

A typical hospital scenario for blood transfusion is as follows: In order to
reduce human error and increase patients safety, the blood transfusion application
must read patient’s identification from the wristband. A nurse can use the
application to get information about the patient’s blood type from the patient’s
EHR. If a patient’s blood type is not known, patient’s blood sample is collected to
determine the blood type. A tag is printed and attached to the blood sample before
sending it to the laboratory. Nurses can order blood products from the blood
bank with blood type or tag number from patient’s blood sample. The laboratory
engineers perform screening tests and send test results to the blood bank. The

Blood bank then delivers blood products to the appropriate departments. Before
any blood transfusion is performed on a patient, the patient’s identification is
matched with the label from the blood product and verified by two nurses. During
the blood transfusion if any complication is found then these are recorded and
sent to the blood bank. We take this scenario into consideration and use multi
metamodelling for designing a distributed blood transfusion application.

In this paper, we present a workflow that integrates the processes of the
distributed application. The proposed approach is based on the principles of the
Diagram Predicate Framework (DPF) [1] [2] and Dynamic logic [3]. DPF provides
a formal diagrammatic approach to multilevel metamodelling based on category
theory and model transformations which provides an abstract visualization of
concrete constraints. We based our approach on multilevel metamodelling since
it offers a clean, simple and coherent semantics for metamodelling [18]. DPF can
be used for structural and behavioral modelling of a system. A workflow model
in DPF represents an abstract process model which may be used for the analysis
of a system. In order to specify the details of a process, such as the specification
of a process, we propose the use of dynamic logic. Dynamic logic is used to
provide dynamic behavior to the processes. Dynamic logic has strong connections
with classical logic and provides a formal reasoning for programs. The use of
dynamic logic for specifying process description of DPF models provides us with
a formalism to construct rich metamodelling languages. The overall approach for
multi metamodelling of distributed applications is depicted in Figure 2. The figure
illustrates the use of different metamodelling hierarchies for modelling the process
model, and entity models: processes in the workflow model are annotated with
their location of execution; messages are formalized as typed graph; processes
located in the same execution point share entity models; dynamic logic is used
for writing process specifications.

Process 1 Process 2
(msg1)

Task

Flow

Typing

[seq]@Location 1 @Location 2

Type graph

Graph(msg1)

Entity model 1 Entity model 2

Workflow
metamodel

Workflow
model

DataSrc

DataSrc

Program
in Dynamic Logic

Represented by

Type graph

Graph

Constraint

conforms to

Type graph

Graph

Constraint

conforms to

Figure 2: Overall approach for multi metamodelling of distributed applications

2 Multilevel metamodelling
Models at each level in a metamodelling hierarchy are specified by a modelling
language at the level above and conform to the corresponding metamodel. This is
known as multilevel metamodelling [18]. With DPF we construct a metamodelling
hierarchy in which a model at any level can be considered as a metamodel wrt.

the models at the level below it. In the DPF approach, models at any level
are formalised as diagrammatic specifications which consist of type graphs and
diagrammatic constraints. DPF is a language independent formalism for defining
metamodelling hierarchies. Constraints are added into a DPF model by graph
homomorphism and the semantics of the constraints are specified in logic (e.g.,
OCL, Alloy).

In this paper, we use DPF to model the structure and behaviour of a blood
transfusion application (Blood-App), patient’s electronic health record (EHR),
laboratory system (LabSys), and a blood bank system (Blood-Bank). These systems
may have different entity models to store information. While the EHR keeps
information about patients, caregivers and departments, the LabSys, Blood-Bank,
and the Blood-App do not require all this information and therefore their entity
models are different. For simplicity we have used a common metamodel and a
common vocabulary in the entity models. Figure 3 shows four DPF models with
their metamodels representing the entity models of the EHR, LabSys, Blood-Bank,
and Blood-App. The graphs represent the structure of the models; constraints are
added into the structure by predicates. Table 1 shows two predicates that we have
used for constraining the entity models in Figure 3. Each predicate has a name
(p), a shape graph, a visualisation, and a semantic interpretation. The semantic
of a predicate is provided by a set of instances. In the EHR entity model, the
[composite], and [injective] predicates are used to constraint the model. The EHR
entity model have following three constraints: a Caregiver who works for a Ward
must have access to the Patient’s information who are admitted into the same Ward; a
Caregiver who works for a Ward must work for the controlling Department; every Patient
has a unique patientID. All the instances of the EHR entity model must satisfy these
constraints.

ClassDataType
Attribute

Reference

ClassDataType
Attribute

Reference

Patient Caregiver
dataAccess

Ward

Typing

wardPat empWard

ClassDataType
Attribute

Reference

PatientString

Nat

bloodType
complication

BloodProduct type

productNo

status patientID

bloodSampleNo
assignedProduct

String

Nat

bloodType

complication

patientID

bloodSampleNo

String

Nat

Typing

Typing

[comp]

[inj]

[inj]
[inj]

[inj]

EHR entity model

Blood-Bank entity model

[inj]

Department
workFor

controlledBy

[comp]

screening

ClassDataType
Attribute

Reference

PatientString

Nat

bloodType

complication

patientID

bloodSampleNo

Typing

[inj]

Labsys entity model

screening
screening

type bloodType

screening

complication

patientID

bloodSampleNo

Patient Caregiver
dataAccess

productNo
assignedProduct

Blood-App entity model

BloodProduct

Figure 3: Entity models of Blood-App, Blood-Bank, EHR, and LabSys

A DPF metamodelling hierarchy consists of (a possible stack of) metamodels,
models, and instances of models. A metamodel specification determines a
modelling language, the specification of a model represents a software system,
and the instances of models typically represent possible states of a system.

Table 1: Predicates of a sample signature
p Shape graph visualisation Semantic Interpretation

[injective] f1 2 fX Y[inj]
Every instance of Y is the image of at most
one instance of X. Formally, ∀x,x′ ∈ X :
f (x) = f (x′) implies x = x′,

[composite] f

1

2

g

h
3

fg

hX

Y

Z
[comp]

For each instance of (g; f), there exists an
instance of h. Formally, ∀x ∈X :

⋃
{ f (y) | y ∈

g(x)} ⊆ h(x)

3 Modelling distributed systems
Rutle et al. proposed a metamodelling approach for behavioral modelling in
[4] and developed a workflow modelling langauge named DERF using coupled
model transformation rules. For modelling distributed systems we extend
the DERF workflow modelling language with the concept of process location,
message passing communication, coordination of processes with entity models,
and process refinement with dynamic logic.

In general, a workflow or process modelling language requires different types
of routing predicates to control the flow of execution among processes. The state
of a workflow is determined by the states of task instances (i.e., processes) in DERF.
Each task instance is annotated with a predicate from [Running] and [Disabled] (in
short <R>, <D>, resp.) to indicate its state 1. A task instance annotated with the
predicate [Running] indicates that the task instance is in the executing state and
may transit to the disabled state (e.g., become annotated with [Disabled]) when it
has finished its execution.

Table 2 shows a set of selected routing predicates and transformation rules
(adapted from [4]) that can be used to construct a workflow model. The [sequence]
predicate indicates a sequential execution order of tasks. The transformation
rule for the sequence also illustrates a rule that changes the annotation of a task
instance x from <R> to <D> and the annotation of a task instance y from <D> to
<R>, respectively. The [xor split] predicate specifies that exactly one of the two
flows must be followed.

We model the behaviour of a distributed system by a workflow where the
processes belong to different systems. We annotate processes with system names
to indicate the location where the processes are executing. For example, we use
@App, @EHR, @LabSys, @BloodBank to indicate the location of execution of the
processes. Here @App denotes the blood transfusion application, @EHR denotes
the patient’s EHR, @LabSys denotes the laboratory system, and @BloodBank
denotes the blood bank. Figure 4 shows two processes ‘Scan Patients Wristband’
and ‘Get Patient Info’ sequentially connected by the [sequence] routing predicate.
The ‘Scan Patients Wristband’ process has been annotated with @App which
indicates that the process executes at the Blood-App. Figure 4 also shows two
instances ‘:Scan Patients Wristband’ and ‘:Get Patient Info’ of processes ‘Scan
Patients Wristband’ and ‘Get Patient Info’. The states of the process instances are
represented by the annotations <R>, and <D>.

We model the message passing communication between processes by
predicates. A message predicate ([Msg(m)]) can be used in a DPF model by graph
homomorphism. Figure 4 shows a message passing communication between

1Here we use two states for task instances rather than four states ([Disabled], [Running],
[Enabled], [Finished]) as proposed in DERF [4].

Table 2: Routing predicates and transformation rules for workflow modelling

p Visualization Coupled transformation rules
LHS RHS

[sequence] YX
f
[seq]

YX
f
[seq]

yx
:f

<R> <D>

YX
f
[seq]

yx
:f

<D> <R>

[xor split]
YX

f

g

Z

[xor]

YX
f

g

Z

[xor]

x
:f

:g

y

z

<R> <D>

<D>

YX
f

g

Z

[xor]

x
:f

:g

y

z

<D> <R>

<D>

YX
f

g

Z

[xor]

x
:f

:g

y

z

<R> <D>

<D>

YX
f

g

Z

[xor]

x
:f

:g

y

z

<D> <D>

<R>

two processes ‘Scan Patients Wristband’ and ‘Get Patient Info’. When a [Msg(m)]
predicate is used in a model, the parameter m is bound to a typed graph. For
instance, Figure 4 shows that a natural number (x : Nat) is passed from ‘Scan
Patients Wristband’ process to ‘Get Patient Info’. During the execution of the
workflow, the variable x will be replaced by a natural number.

Scan Patients
Wristband

Get Patient
Info(patientId)

[Msg (m)] X Y
(m)

flow
1 2

Predicate Name Arity Visualization

Task

Flow

constraint Typing

[Sequence] X Y
[seq]flow

1 2

[seq]

(patientId) Nat

x

:Scan Patients
Wristband

:Get Patient
Info

[Disabled]
X1

Predicate Name Arity Visualization

[Running]
X

<R>
1

<D>

<R> <D>

@App @EHR

[Cond (c, m)] X Y
<c, m>

flow
1 2

(patientId) Nat

x=101

Figure 4: Tasks sending and receiving messages

Figure 5 shows the workflow for the blood transfusion scenario using the
routing predicates from Table 2. To order blood products for patients, their
wristband is scanned by the Blood-App. The scanned ID is sent to the EHR where
patient’s information is retrieved and sent back to the Blood-App. If patient’s blood
type is not found, a tag is printed to put on patient’s blood sample, otherwise an

order is made for the blood product. The outgoing branches of the ‘Check blood
Type’ is using the [Cond(c,m)] predicate to specify branching conditions. The
condition predicate [Cond(c,m)] has a typed message m and a first-order formula c,
which is used to specify a branching logic. After collecting patient’s blood sample,
it is possible to order the blood product by sending the blood sample number.
Screening tests are performed before any blood product is finally dispatched from
the blood bank. When a blood product reaches the patient’s location, the patient’s
id is matched and verified by nurses. Before starting a blood transfusion, nurses
measure patient’s blood pressure and heart rate. During the blood transfusion
process, if any complication is arised, they are recorded and sent to the blood
bank. Patient’s blood pressure and heart rate are also measured after completing
the blood transfusion.

Scan Patients
Wristband

Get Patient
Info

Check blood
Type

@App

[seq]

(patientId)

[seq]

(patientInfo)

@EHR

Print Tag

@App

Order for
Blood

@App

[xor]

<TypeFound, bloodType>

Collect
Sample

Order for
Blood

@App

Analysis

Screening
Test

[xor']

Collect Blood
Product

@App

Match with
Patients ID

@App

Start Blood
Transfusion

@App

Check for
Complications

Record and
Send

@App [xor]

[xor']
Record

Data

@EHR

[seq][seq] [seq]

[seq]

[seq][seq][seq]

[seq]

(sampleId) (bloodType) (orderInfo)

(orderInfo)

(orderInfo)

(testResult)

(patientInfo)

(productInfo)(matchResult)(patientInfo)<Yes, result>

<No, patientInfo>(complicationResult)

(bp&HrtRate)

@App

@App

@App

@App

@LabSys

@LabSys

Record
Complications

@BloodBank

[seq]

 (ack)

<TypeNotFound, patientInfo>

Measure BP
and Heart Rate

@App
[seq]

(bp&HrtRate)

Measure BP
and Heart Rate

End
Transfusion

@App

[seq]

(ack)

Collect
Test Result

@BloodBank

[seq]

Figure 5: Blood transfusion workflow

4 Message passing between distributed processes
In this section we provide the details of the proposed metamodelling approach
for distributed applications. The message passing communication between the
processes of a distributed application is explained with a running example from
the blood transfusion application. Figure 6 (top) shows three processes from the
blood transfusion workflow presented in Figure 5 where the patients wristband
is read by the Blood-App, then patient’s identification is transferred to the EHR
to retrieve patient’s blood type related information and finally the blood type is
checked by the Blood-App. Process instances are coordinated with entity models
by the ‘DataSrc’ relations. The ‘:Scan Patients Wristband’ process instance and the
‘:Check blood Type’ process instance are associated with the same entity model
as they belong to the Blood-App application. Figure 6 (bottom) shows sample
instances of the entity models. The purpose of a sample instance of a model
is to define the scope of a system for simulation. During the execution of the
workflow, ‘:Scan Patients Wristband’ changes its state from <R> to <D>; the typed
graph of message (patientId) is matched with the Blood-App entity model and its

sample instance; the variable x : Nat is bound to a value from {101, 201, 301} and
therefore (patientId) is transmitted to the ‘:Get Patient Info’ process instance. The
sample instance of the EHR entity model represents the database for patients and
caregivers.

Scan Patients
Wristband

(patientId)
[seq]

(patientId)

Nat

x

:Scan Patients
Wristband

<R>

DataSrc

Get Patient
Info

Check blood
Type[seq]

(patientInfo)

:Get Patient
Info

:Check blood
Type

(patientId)

DataSrc
DataSrc

@App @EHR @App

<D> <D>

Patient Caregiver
dataAccess Patient Caregiver

dataAccess

Ward

wardPat
empWard

String

Nat

bloodType

complication

patientID

bloodSampleNo

String

Nat

bloodType

complication

patientID

bloodSampleNo

[comp]
[inj][inj]

101 201

301 101

Adam

p1:patientID

b1:bloodType
"AB+" Susan

d1:dataAccess

EM01

w1:wardPat
e1:empWard

201

Jim

p2:patientID

b2:bloodType
"O+" Sam

d2:dataAccess

EM02

w2:wardPat
e2:empWard

301

Martha

p3:patientID

b3:bloodType
"A-" w3:wardPat

e3:empWard

PatientString

Nat

bloodType

patientID

y = x

p

pid

bt
z

Blood-App entity model and a sample instance

EHR entity model and a sample instance

BloodProduct
type

productNo

assignedProduct

[inj]

DepartmentworkFor

E
m

er
ge

n
cy

f1:workFor

f2:workFor

c1:controlledBy

c2:controlledBy

controlledBy

[comp]

screening screening

Figure 6: Process instances and their associated entity models

Upon receival of message (patientId), the process instance ‘:Get Patient Info’
changes its state from <D> to <R>. ‘:Get Patient Info’ does not make any change to
the patient’s database but retrieves patient’s information from the database. The
typed graph of message (patientIn f o) is matched with the EHR entity model and its
sample instance. The matching of (patientIn f o) retrieves information about patient
with patientID ‘101’ and the message is sent to the next process instance. Figure 7
shows a message transfer (i.e., the information being transferred) between ‘:Get
Patient Info’ and ‘:Check blood Type’ process instances and their state change.

5 Process description in dynamic logic
We have presented our multi metamodelling approach for modelling distributed
applications in earlier sections. The structural and behavioral modelling
presented until this point are abstract and we have not detailed what each
process instances does in the running state. In a typical software application,
processes take input and manipulate data from an entity model based on specific
algorithms. Model transformation can be used for data manipulation in a graph-
based system. However, to specify a data manipulation algorithm using model
transformation rules would be very time consuming. We propose a variant of

(patientId) Nat

x= 101

:Scan Patients
Wristband

<D>
:Get Patient

Info
:Check blood

Type

(patientInfo)

<R> <D>

PatientString

Nat

bloodType

patientID

y = 101

p=Adam

pid=p1:patientID

bt=b1:bloodType
z="AB+"

:Scan Patients
Wristband

<D>
:Get Patient

Info
:Check blood

Type

<D> <R>

(patientId) Nat

x= 101

Figure 7: Message transfer between process instances

first-order dynamic logic [3] for specifying the program details of processes.
The proposed variant supports updating the domain of computation while the
traditional version assumes that the domain of computation is fixed. This support
is essential for modelling the behavioral aspects of a system. Atomic programs
in this variant are no longer simple assignment statements that assign values to
variables during the computation, but also changes the interpretation by creating
and deleting facts. The atomic program a = r(term1, ...termn) inserts a new fact with
the predicate symbol r into the interpretation of first-order relations; the atomic
program a = ¬r(term1, ...termn) deletes an existing fact from the interpretation of
first-order relations. In this variant of first-order dynamic logic, states are no
longer valuations of a set of variables over the carrier of a first-order structure,
but also includes interpretation of the first-order structureM. The execution of
an atomic program a changes the state of a system in the following way:

• a = x := t assigns the value of term t to the variable x

• a = r(term1, ...termn) updates the interpretation of M by adding a new fact
r(term1, ...termn)

• a = ¬r(term1, ...termn) updates the interpretation of M by removing an
existing fact r(term1, ...termn)

Atomic formulas in dynamic logic are atomic first-order formulas of the form
φ = r(t1, ...tn) where r is an n-ary relation symbol and t1, ...tn are terms. An atomic
formula φ = r(t1, ...tn) is true in a state iff the fact r(t1, ...tn) exist in the domain
of computation. Dynamic logic programs α are constructed using sequential
composition (α1 ; α2), nondeterministic choice (α1∪α2), iteration (α∗1) and tests
(ϕ?) based on the grammar in [3]. Tests ϕ?, are special atomic programs whose
execution terminates in the current state iff the test succeeds (is true), otherwise
fails. Formulas ϕ are constructed using logical connectives (e.g., ϕ1 → ϕ2),
quantifiers (e.g., ∀xϕ), and modal operators (e.g., [α]ϕ) defined on programs.
[α]ϕ defines many modalities, one modality for each program, each interpreted
over the relation defined by the program α. [α]ϕ means that “if program α is
started in the current state, then however (if at all) it terminates, in the final state,
ϕ holds.”

Once we have specified a program formally, we can use Hoare logic statements
of the form {ϕ}α{ψ} for program verification which says that the program α is

partially correct with respect to the pre-condition/post-condition specification
ϕ,ψ. The pre-conditions/post-conditions specify that, if the program α is run in a
state satisfying ϕ, then if and when it halts, it does so in a state satisfying ψ [5].

In order to use first-order dynamic logic in DPF, we need to establish that a
typed graph can be converted to and from a first-order structure. The conversion
is very straightforward and an example is shown in Figure 8 where a typed graph
is converted to a first-order structure. During the conversion, for each node
and edge from the type graph we get a unary predicate symbol. These unary
predicates along with two binary predicates src and trg are added into the first-
order vocabulary. The src and trg predicates are used to represent the source and
target information of the edges of a typed graph.

n1 n2
e1

e2

a b
x

c
y

z

Typed graph

Typing

n1(a), n2(b), n2(c),
e1(x), e2(y), e2(z),
src(x, a), trg(x, b),
src(y, b), trg(y, c),
src(z, c), trg(z, b),

first-order structure

Type graph

{n1, n2, e1, e2, src, trg} R (Relation symbols)

R (Interpretation of R)I

Figure 8: Conversion of a Typed graph to a first-order structure

With the proposed variant of first-order dynamic logic proposed, we can
specify a program to manipulate a first-order structure. This feature along with
the conversion mechanism enables us to specify a DL program that operates on
DPF models. We use this feature to refine distributed applications. To illustrate
this, we continue with the blood transfusion application and refine it with a DL
program specification. Below the program specification for the process instance
‘:Check blood Type’ from the workflow presented in Figure 5:

α := α1; ¬(z = “”)? α2; (z = “”)?
α1 := Patient(p); patientID(pid); src(pid, p); trg(pid, y)
α2 := String(z); bloodType(bt); src(bt, p); trg(bt, z)

:Get Patient
Info

:Check blood
Type

<D> <D>
:Order for

blood

<R>

:Print Tag
<D>

DataSrc

Patient Caregiver
dataAccess

String

Nat

bloodType

complication

patientID

bloodSampleNo

[inj]

101

Adam

p1:patientID

b1:bloodType
"AB+"

Blood-App entity model and a sample instance

201

301

BloodProduct
type

productNo [inj]

assignedProduct

screening

Figure 9: Updated state of the system
after the execution of program α

The program uses the variables
(e.g., y,z,p,bt,pid) from its input graph
as shown in Figure 7 on the arc/edge
from ‘:Get Patient Info’ to ‘:Check
blood Type’. The program α first exe-
cutes program α1 that creates new facts
for patient instance and its relation
with the patientID. The programα then
checks if the bloodType is an empty
string or not. If the test ¬(z = “′′)?
succeeds (i.e., the blood type is not an
empty string), the program α2 is ex-
ecuted. The program α2 creates new
facts for blood type and its relation
with the patient instance. The updated
domain of computation is then used to update the instance of the Blood-App
entity model as shown in Figure 9.

6 Related and Future Work
There are several workflow and process modelling languages such as YAWL [13],
BPMN [15], CWML [14], π-calculus [6] Tools have been developed to produce
models with these modelling languages; some tools are also equipped with
anlysis and verification techniques. MacCaull et al [16] developed a workflow
management tool suite called NOVA Workflow where one can graphically design
a workflow model using a visual editor and can write task specifications using
the domain specific language T� [17]. Although these modelling languages have
certain strength in modelling and analysis of a system they do not follow a
metamodelling hierarchy and therefore the languages cannot be adapted. In
this paper we provided a multi metamodelling approach which can be easily
customized depending on various modelling requirements.

Diskin et al. proposed a megamodeling framework based on graphs and graph
mappings, and operations over them [9]. They presented model mapping which is a
structured set of links between models, specified a library of elementary building
blocks, and presented how to combine them into a complex workflow. Diskin et al
focused on a single aspect of a system with multiple views. Different views of the
entity model in [9] would correspond to different views of the datasource model
in our paper. The foundation of our multi metamodelling is based on DPF [1] and
DP-logic which was initially developed by Diskin et al in the functorial semantics
setting [10], [11]. In this paper we proposed an extension to the metamodelling
approach for modelling distributed systems.

Rabbi et al [12] proposed a formalization for the co-ordination of multiple
metamodels using a linguistic extension of the metamodelling hierarchy. The
linguistic extension consists of co-ordinating edges together with constraints on
those edges which allows the integration of metamodels. The proposed method
can capture different aspects of a system and provides modelling notation to
design an integrated model. In this paper we have used co-ordination between
the process model and entity metamodels, and have mainly focused on modelling
distributed systems. The use of typed graph for message passing communication,
the proposed variant of first-order Dynamic Logic for writing process specification
are new contributions of this paper. The proposed method provides different level
of abstraction for modelling. In the future we plan to integrate the proposed
approach into the DPF framework http://dpf.hib.no and perform evaluation of
its applicability. We also plan to incorporating various analysis techniques to
verify different aspects of models such as state space analysis for process models,
consistency checking for models, and program verification for specifications
written in dynamic logic.

References
[1] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD

thesis, Department of Informatics, University of Bergen, Norway, 2010.

[2] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, and A. Rutle. Dpf workbench:
A diagrammatic multi-layer domain specific (meta-)modelling environment.
In R. Lee, editor, Computer and Information Science 2012, volume 429 of Studies
in Computational Intelligence, pp. 37–52. Springer, 2012.

[3] D. Harel, T. David, and D. Kozen. Dynamic Logic. MIT Press, Cambridge,
MA, USA, 2000.

[4] A. Rutle, W. MacCaull, H. Wang, and Y. Lamo. A metamodelling approach
to behavioural modelling, In Proceedings of the Fourth Workshop on Behaviour
Modelling - Foundations and Applications, ser. BM-FA ’12. New York, USA:
ACM, 2012, pp. 5:1–10.

[5] M. Huth, and M. Ryan. Logic in Computer Science: Modelling and Reasoning
About Systems. Cambridge University Press. New York, USA, 2004.

[6] J. A. Bergstra. Handbook of Process Algebra. In Elsevier Science Inc. New York,
USA, 2001.

[7] C. A. R. Hoare. Process Algebra: A Unifying Approach. In Communicating
Sequential Processes. The First 25 Years. LNCS, vol. 3525, pp. 36–60. Springer,
Heidelberg (2005).

[8] C. A. R. Hoare. Communicating Sequential Processes. In Prentice-Hall 1985.

[9] Z. Diskin, S. Kokaly, and T.Maibaum, . Mapping-aware megamodeling: Design
patterns and laws. In SLE; 2013 vol. 8225 of LNCS. Springer; 2013, p. 322–343.

[10] Z. Diskin, and B. Kadish. Variable set semantics for keyed generalized sketches:
formal semantics for object identity and abstract syntax for conceptual modeling.
Data Knowl. Eng. 47(1), 1–59 (2003)

[11] Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Universal arrow foundations
for visual modeling. In M. Anderson, P. Cheng, V. Haarslev. (eds.) Diagrams 2000.
LNCS (LNAI), vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

[12] F. Rabbi, Y. Lamo, and W. MacCaull. Co-ordination of Multiple Metamodels,
with Application to Healthcare Systems. In EUSPN/ICTH 2014: pp. 473-480

[13] W. van der Aalst, and A. H. M. T. Hofstede. YAWL: Yet another workflow
language. In Information Systems, pp. 30:245–275, 2003.

[14] F. Rabbi, H. Wang, and W. MacCaull. Compensable workflow nets. In In ICFEM
2010, vol. 6447 of LNCS. Springer; 2010, p. 122–137.

[15] S. White. Introduction to BPMN. Technical report, 2004.

[16] W. MacCaull, F. Rabbi. NOVA Workflow: A Workflow Management Tool Targeting
Health Services Delivery. In FHIES 2011. LNCS, vol.7151, pp. 75–92, Springer
(2012).

[17] F. Rabbi, and W. MacCaull. T�: A Domain Specific Language for Rapid Workflow
Development. In MODELS 2012. LNCS, vol. 7590, pp. 36–52, Springer (2012).

[18] C. Atkinson, and T. Kühne. Model-Driven Development: A Metamodeling
Foundation. In IEEE Software, 20(5):36–41, 2003.

	Introduction
	Multilevel metamodelling
	Modelling distributed systems
	Message passing between distributed processes
	Process description in dynamic logic
	Related and Future Work

