Named-Entity Chunking for Norwegian Text using
Support Vector Machines

Bjarte Johansen
Department of Information Science and Media Studies
University of Bergen
Postbox 7802, N-5007 Bergen, Norway
bjarte.johansen@uib.no

October 16, 2015

Abstract

Named-Entity Chunking is part of the Named-Entity Recognition (NER)
process and is the task of identifying which parts of a text are names.
This task is usually done as an implicit part of the recognizer, but
because previous attempts at NER for Norwegian text focus only on the
recognition, this research represents an attempt to develop an explicit
chunker. The research shows that if we only focus on demarcating names
and not on discovering their type as well, we are able to accurately
(>95% Fi-score) find the names in Norwegian text using Support Vector
Machines.

1 Introduction

Named-Entity Chunking (NEC) is the task of demarcating which segments of a
text are parts of a named entity and which are not. A named entity is a specific
person, place, event, etc. Chunking is different from the process of Named-Entity
Recognition (NER) in that we are not interested in the type of the entity, but only
finding the entities themselves.

Maurits Escher was a Dutch artist .

Table 1: An example sentence.

To understand better what the problem is we can look at the example in table
In the example, we see Maurits Escher. When we are chunking the sentence we are
trying to discover that the terms Maurits and Escher are part of the same named
entity.

We also see the term Dutch, and even though it refers to a nation, we do not
consider it by itself an entity. Artist also appears, which on the other hand is an
entity, but it is a general category and does not refer to a single individual (or thing)
and is therefore not a named entity.

This paper was presented at the NIK-2015 conference; see http://www.nik.no/.

The reason for developing an explicit chunker instead of as part of a NER tool is
that previous research on recognition for Norwegian focused on only categorizing
the names in pre-chunked data (Haaland, 2008} Ngklestad, 2009). The exception is
Jonsdottir| (2003), who do chunking as a part of the recognizer. In future research,
we are also interested in collecting entities from newspaper articles, but are not
necessarily interested in the type of the entities.

It is important to do this type of research for languages like Norwegian as it
shows that these types of methods used in this research generalizes over different
languages given the right feature selection and training material.

This paper proposes a solution to the problem of named entity chunking in the
context of Norwegian text. It does that by:

1. Discussing and identifying some characteristics of Norwegian that are important
for named-entities in section Bl

2. Running experiments to show that Support Vector Machines (SVM) are able to,
given the features that we have defined, provide state of the art performance
on this task. See section Ml

3. Comparing our solution to what others have done before in section

4. Concluding on the results and discussing any future work in section [6]

2 Related work

Jonsdottir| (2003) did some early work on chunking and recognition for Norwegian.
They used a ruled-based approach through the use of constraint grammar. The
approach did provide good recall scores (>90%) for NER, but the precision did not
reach satisfactory results (<50%). Jonsdéttir does not provide the corresponding
numbers for their NEC.

Noklestad, (2009) and |Haaland| (2008)) also worked on NER for Norwegian texts.
Ngklestad uses a Memory-Based Learning approach while Haaland uses Maximum
Entropy Models. The main problem the approach of both Ngklestad and Haaland is
that they are dependent on previously chunked text to work correctly. The chunker
they used is however no longer available.

Zhou and Su| (2002) do NER through a Hidden Markov Model based chunker.
This is what inspired us to develop an explicit chunker separate from the recognizer.
Their paper is however only for English.

Kudo and Matsumoto| (2001)) does use SVMs to identify English base phrases,
where named entities would be one such base phrase, and do very well. However,
they do not try to extend their work to other languages, which is what we are doing
in this paper by trying to use the same method for NEC of Norwegian text.

3 Important characteristics of Norwegian text

In this section we describe some characteristics that are important for named entities
in Norwegian text.

Capitalization

In the book "Skriveregler" (translation: rules of writing) Vinje| (1998) presents 19
rules for capitalization of words in Norwegian. The most notable are however the
rules for titles and organizations. Titles are never capitalized in Norwegian; kong

Harald (King Harald). The names of organizations should, as a rule, only have the
first term capitalized. E.g "Den norske stats oljeselskap" (Statoil). However, there
are many exceptions to this rule. This means capitalization is not always a good
indicator for Norwegian names. Haaland| (2008) provides a summary of the rules in
English.

Compound words

In Norwegian there is usually a semantic difference between two sentences if you use
a compound word or two separate words, e.g. "rgykfritt" vs. "rgyk fritt" Sprakradet
(2009). The first translates to "no smoking" while the second to "smoke freely". This
affects grammar, but also named entities. Organizations can sometimes consist of
compound words like "Luftforsvaret" (The Air Force). If we had instead written
"Luft forsvaret" it would instead translate to "Air out the Armed Forces". (The
capitalization of "forsvaret" is correct in this instance if we are referring the Armed
Forces in general and not the institution.)

Polysemy

Norwegian also has many polysemes; words that mean different things in different
contexts. An example would be a a word like "historie" which could both be translated
to "story" or "history" depending on the context Jonsdéttir| (2003)). There are also
names in Norwegian that are polysemic and can be quite difficult to understand
without a wider context. The sentence "Bjorn er farlig" can be translated to both
"Bears are dangerous" or "Bjgrn is dangerous" as Bjérn can be the given name
of a person. It could therefore be important to capture some of the context to
disambiguate between the terms which are part of a name and those that are not.

Two written forms

Norwegian has two written forms; nynorsk and bokmal. They vary slightly in
grammar and spelling, but are otherwise quite similar. The variance between the
written forms does, however, mean that we cannot just run a chunker that has been
trained on one of the forms and expect it to work well on the other. In this paper
we only focus on bokmal as it is the most popular written form.

Regional variances

Norway has many dialects and the dialects can affect the spelling, grammar and
choice of words within the same written form. F.ex., normally, Bokmal and nynorsk
both have three grammatical genders; female, male and, neutral. An exception is
the Bergen dialect which only uses two grammatical genders; common and neutral
(Bordal, 2015)). A name like "Tariffnemnda" (The Tariff Committee) could therefore
also be spelled "Tarriffnemnden" depending if the writer speaks the Bergen dialect or
not. This does not have an immediate effect on chunking, but increases the number
of different values in the data set and therefore makes it more difficult to learn from
if it is not handled properly.

4 Experiment

During the research for this paper we did multiple experiments to test whether a
difference in how the terms are categorized affects the accuracy of the classifier. We

chose to use a SVM classifier as they have shown themselves to work well within text
classification (Joachims, [1998)).

Support Vector Machines

A SVM is a supervised learning algorithm "where the goal is to find a decision
boundary between two classes that is maximally far from any point in the training
data" (Manning et al., [2008| p. 293).

Figure 1: Example result of training a SVM.

In figure [1f we can see an example model after training a SVM with samples
from two different classes. The hyperplane is the solid line in the middle, while the
stippled lines is the margin to the hyperplane. The solid-coloured samples on the
margins are the support vectors of the model. The goal of training a SVM is to find
the hyperplane with the largest margin between data points in two different classes.

For the research in this paper we were interested in distinguishing between
multiple classes, but traditionally a SVM is only able to differentiate between two.
To get around this constraint we use an extension to SVMs which supports multi-class
data; the "one-versus-one" approach. The classifier builds a SVM for each pair of
classes and chooses the class that is selected by the most classifiers.

In the case of labeling errors there might not be possible to find a hyperplane
that cleanly separates the different classes. To get around this constraint we use
the soft-margin method which allows some classification errors. C' is the soft-margin
parameter to the error function and controls how much a classification error is
penalized (Vert et al., 2004). The size of C' can therefore result in over- or under-
fitting by making the SVM choose a small or large margin hyper-plane.

The kernel type that we used was the radial basis function (RBF) which allows
the SVM to also classify nonlinear data by lifting the data into higher dimensions
were they might be linearly separable after all. v is the free variable of the kernel
and decides how the points in the problem space are lifted into higher dimensions to
make it easier to separate the different classes from each other. The RDF should be
able to find any linear separation that both a linear and polynomial kernel is able to
find, though it is more expensive to compute. The implementation we used was the
libsvm library (Chang and Lin} 2011)).

Tagging
(Kudo and Matsumoto, 2001)) presents 5 main ways of tagging chunks in text. For

the experiment in this paper, we chose the IOB2 method of tagging to demarcate
the named entity chunks. It uses 3 tags to identify tokens

I A token inside a chunk.
O A token outside any chunk.
B A token at the beginning of a chunk.

The reason for choosing the IOB2 tagging scheme is because it provides more
of each tag in the data set than the other systems, which makes it easier for the
SVM training algorithm to learn from the data set. We could also have used the
IOE2 scheme; which is equivalent to IOB2, but tags the end of chunks instead of the
beginning.

The other tagging methods either only tags the ends/beginning of tags between
the boundary of two chunks (IOB1/IOE1) or introduces extra tag(s) (Start/End)
and therefore leaves fewer instances of some tags and gives the SVM little material
to learn from.

Feature vector

In the example sentence in table [2] we can see that each word is accompanied by its
part-of-speech (PoS), lemma (the canonical form of a word) and, direct translation.
These data are the result of running the sentence through the OBT.

PoS noun verb det noun clb
Sentence |Industrien har ingen problemer .
Lemma industri ha ingen problem

Translation | The industry has no problems

Table 2: Example PoS, sentence, lemma and, direct translation.

The data are used to transform each word in the sentence into a feature vector
that can be used to learn a model for the data or predict new instances. In table
we can see the features that has been selected together with an example from one of
the words in the sentence in table 2

Features Vector
lemma - 2 industri
lemma -1 ha
lemma ingen
lemma + 1 problem
lemma + 2

PoS - 2 noun
PoS -1 verb
PoS det
PoS + 1 noun
PoS + 2 clb
Capitalized? 0

Last 4 ngen

Table 3: The defined features and example vector.

The features that we chose were the lemma of the current word and the 2 words

on each side, the PoS of each word, if the word is capitalized and, the 4 last characters
of the word.

We constrained the use of the surrounding words to two words on each side. This
was because we wanted to capture some of the context for each word, but at the
same time we wanted to keep the cost of training the model at a level that was
possible within the available resources. We also chose to use the PoS for each word
as the PoS contains hints to whether a word is part of a name or not. F.ex would a
name (often) be classified as a noun by the OBT.

We use capitalization as a feature because we want to downcase the lemmas to
keep the number of possible values low. The reason we keep the last 4 characters
of the word is because of a feature of Norwegian last names: Many Norwegian last
names has the same ending, like Johansen and Evensen or Fjellheim and Norheim.

Setup

We use the same data set as Ngklestad| (2009) and |Haaland| (2008) where the terms
are tagged with their type (person, organization, etc.) and their grammatical class.
Since the grammar in the data set was tagged with an older version of the Oslo-
Bergen Tagger (OBT), we cleaned the data and align the tags with the new version
of the OBT. The OBT 'is a robust morphological and syntactic tagger developed at
the University of Oslo and at Uni Computing in Bergen (Tekstlaboratoriet and Uni
Computing, 2014)."

An overview of the data set for this research is available in table 4l It consists of
210 newspaper articles, 46 magazine articles and 9 works of fictions with a total of
230453 tokens (words, punctuation, symbols, etc.). There are a total of 7505 entities
in the data set.

Resource Sources Tokens Entities
Newspaper articles 210 107814 4474
Magazine articles 46 63763 1916
Works of fiction 9 bH8YT6 1115
Sum 265 230453 7505

Table 4: Description of data set.

We tagged each token in the data set with the IOB2 tagging scheme. The
categories with the number of tags are specified in table

Category Count Percent
(B)eginning 7505 3.26%

(I)nside 2583 1.12%
(O)utside 220365 95.62%
Total 230453 100.00%

Table 5: Number of terms in each category.

Each token, together with the surrounding context, was then transformed into a
feature vector.

The SVM library we used for this research does not support a string vector as
input, only a sparse numerical matrix, so we built a tool to convert between our text
vectors and this format.

To test different parameters to the SVM learning algorithm we did a grid search
over a set of variables. For the C value we used the range 27°1°> where the power
increments by 2 at each step.

For v we used the range 23+~1% where the power decrements by 2 at each step.

For every parameter option we did a 5-fold cross validation to check the result
of the learned model. To be able to accurately test the classifier after it had been
learned, we also removed 20% of the training data to use for testing by randomly
selecting 20% of the instances from each class. The reason for selecting randomly
from each class instead of the total data set was to avoid randomly selecting only
the dominating class, Outside, and ensuring that we had enough test instances for
each class.

To distribute the calculations over many machines and improve the time it takes
to test all combinations of C' and v we used GNU Parallel (Tange, 2011)); a shell tool
for executing jobs in parallel.

Results

The results from the experiment are shown in table [l There we can see that the
chunker has a higher precision than recall. This means that the chunker is usually
correct when it reports that it has found a chunk, but that it is not able to find all
chunks in a text. However, the Fj-score tells us, as the harmonic mean between the
precision and recall, that the accuracy of the NEC is quite good.

Precision Recall‘ Fg—y
97.95 95.34]96.63

Table 6: Results of experiment.

To calculate the precision and recall of the system we only looked at chunks that
are an exact match to the corresponding chunk in the data set. A partial match is
therefore not only a false negative, but also a false positive, as the exact chunk found
by the system is not found in the original data set.

We also discovered that if we removed capitalization as a feature from the training
data, the recall of the chunker dropped significantly (<50%), but the precision stayed
high (>95%). Taking into consideration the many capitalization rules of Norwegian,
we believe this result shows that while capitalization is important for finding the
start of entities, it is not as important for the following parts of the entities. We can
say that because the precision is still high, meaning that the entities that the chunker
does find when capitalization is removed from the features are mostly correct.

If we also look at the entities the chunker that produced the results in table
[6] classified incorrectly it seems like it has problems with names that are at the
beginning of sentences. This might be because of the polysemy of certain names in
Norwegian and that capitalization in words at the beginning of sentences is not a
good indicator for a name since (almost) all sentences begin with a capitalized word.

5 Discussion and Conclusion

If we compare our system to the CONLL shared task in 2000, we can see that
the score for the system is significantly better than the baseline precision, recall
and Fi-score (Tjong Kim Sang and Buchholz, 2000)). The system even performs

better than the best performing chunker from that competition (95.8%) (Kudo and
Matsumoto, [2001)). However, this is not a completely fair comparison as they are
trying to solve any text chunking problem for English: Noun phrases, verb phrases,
adjective phrases, etc. It is also focusing on English and not Norwegian. Despite
this, we can use the number as a baseline for how a chunker should perform and can
therefore conclude that our chunker is doing quite well.

Zhou and Su| (2002) does equally well on chunking names in English text as we
do on chunking Norwegian text with an Fj-score of 96.6%. However, their data set
contains only 1330 instances, and it is therefore difficult to judge the generality of
their chunker. Though the data set used for training the chunker in this paper is
only moderately sized it is still over 5 times as big at 7465 entities.

Previously reported research on named entities in Norwegian text focuses only on
NER and not on NEC, but to compare our research to theirs we reduce their system
to a binary "if they find a name or not" and look only at the total Fj-score of the
whole system. We do this so we can tell if our chunker is better at finding names
than a combined chunker and recognition approach.

Comparing this research to the research from |[Ngklestad (2009) and Haaland
(2008) is not completely appropriate as their research only works on pre-chunked
text. They need the names in the text to be already picked out and then uses the
surrounding context to discover the type of entity.

The only candidate that we know of that goes from untagged Norwegian text
to NER is the work by [Jonsdottir| (2003)) and they report a precision of 45%, recall
of 92% and a final Fi-score of 60%. If we compare this score with the Fj-score of
our chunker we can see that our chunker is more precise (98%), offers better recall
(95%) and, is therefore also more accurate (97%). However, this comparison is also
problematic since theoretically their chunker could perform perfectly and the loss in
precision is from the recognizer. We still provide the comparison as it is the only
work on Norwegian text that is close to our research.

From the results we see that by using SVMs we are able to accurately (>95%
Fi-score) find names in Norwegian text and that if we are interested in finding just
the names in a text and not their type, it is better to implement an explicit chunker.

6 Future work

As mentioned in section [2] there are several research papers describing approaches
to NER, but they need the named entities in the text to be pre-tagged and will
therefore not work with untagged data. A future path for this research would be to
test the NEC developed in this project with these approaches and see if we are able
to do streaming NER on live data.

Though we were able to identify some characteristics of Norwegian text that
applies to the tasks of Named-Entity Chunking and Recognition, we have not been
able to find a good way to include what we learned in the feature vector used to
train the chunker we developed in this paper. We have seen that polysemy and the
many capitalization rules of Norwegian can affect the accuracy of our research. In
the future we should try to find ways to use these characteristics to improve the
accuracy of the chunker.

References
Guri Bordal. Substantiv. https://snl.no/substantiv), July 2015.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27,
2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Asne Haaland. A Mazimum Entropy Approach to Proper Name Classification for
Norwegian. PhD thesis, University of Oslo, March 2008.

Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. Springer, 1998.

Andra Bjork Jénsdottir. ARNER, what kind of name is that? - An automatic
Rule-based Named Entity Recognizer for Norwegian. PhD thesis, University of
Oslo, May 2003.

Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In
Proceedings of the second meeting of the North American Chapter of the Association
for Computational Linguistics on Language technologies, pages 1-8. Association
for Computational Linguistics, 2001.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to
information retrieval, volume 1. Cambridge university press Cambridge, 2008.

Anders Ngklestad. A machine learning approach to anaphora resolution including
named entity recognition, pp attachment disambiguation, and animacy detection.
PhD thesis, University of Oslo, June 20009.

Sprakradet. Orddeling og seerskriving. http://www.sprakradet.no/Vi-og-vart/
hva-skjer/Aktuelt-ord/Orddeling-og-sarskriving/, 2009.

Ole Tange. Gnu parallel - the command-line power tool. ;login: The USENIX
Magazine, 36(1):42-47, Feb 2011. URL http://www.gnu.org/s/parallel.

Tekstlaboratoriet and Uni Computing. The oslo-bergen tagger. http://www.
tekstlab.uio.no/obt-ny/english/index.html, 2014.

Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the conll-2000
shared task: Chunking. In Proceedings of the 2Nd Workshop on Learning
Language in Logic and the 4th Conference on Computational Natural Language
Learning - Volume 7, ConLL ’00, pages 127132, Stroudsburg, PA, USA, 2000.
Association for Computational Linguistics. doi: 10.3115/1117601.1117631. URL
http://dx.doi.org/10.3115/1117601.1117631.

Jean-Philippe Vert, Koji Tsuda, and Bernhard Scholkopf. A primer on kernel methods.
Kernel Methods in Computational Biology, pages 35-70, 2004.

Finn-Erik Vinje. Skriveregler. Aschehaug, 7 edition, 1998. Gjennomgatt av Norsk
sprakrad og anbefalt for offentlig bruk av Kulturdepartementet.

GuoDong Zhou and Jian Su. Named entity recognition using an hmm-based chunk
tagger. In proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, pages 473—-480. Association for Computational Linguistics, 2002.

https://snl.no/substantiv
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.sprakradet.no/Vi-og-vart/hva-skjer/Aktuelt-ord/Orddeling-og-sarskriving/
http://www.sprakradet.no/Vi-og-vart/hva-skjer/Aktuelt-ord/Orddeling-og-sarskriving/
http://www.gnu.org/s/parallel
http://www.tekstlab.uio.no/obt-ny/english/index.html
http://www.tekstlab.uio.no/obt-ny/english/index.html
http://dx.doi.org/10.3115/1117601.1117631

	Introduction
	Related work
	Important characteristics of Norwegian text
	Capitalization
	Compound words
	Polysemy
	Two written forms
	Regional variances

	Experiment
	Support Vector Machines
	Tagging
	Feature vector
	Setup
	Results

	Discussion and Conclusion
	Future work

