
Achieving Accessible Rich Internet Applications

Linn Steen-Hansen1

Siri Fagernes2

1Agency for Public Management and eGovernment (Difi)
2Westerdals Oslo ACT

Abstract

This work presents guidelines on making accessible Rich Internet
Applications (RIAs). The guidelines have been developed based on a
thorough literature review, summarizing the current accessibility issues
related to RIA. Existing solutions and recommendations have been processed
and converted into a set of guidelines, aimed at those responsible for
developing RIA solutions. Participants working with web development and
accessibility evaluated the guidelines. The most important contribution from
this project to the field of web accessibility research is strong indications of a
need for process oriented accessibility guidelines.

1 Introduction
A Rich Internet Application (RIA) is a web application designed to resemble regular
desktop applications. A RIA normally runs inside a browser and usually does not require
any client-side software installation [1]. This approach allows the client system to handle
local activities, calculations, reformatting and so forth, thereby reducing the overhead of
client-server traffic. Most RIA development is based on standardized technologies like
HTML, CSS and JavaScript [2].

RIAs increasingly rely on client-side code execution. New content can be obtained
using JavaScript/AJAX, without refreshing or loading a new web page. User interaction
can modify visible elements on a web page without requesting data from a server.
Alternatively, an AJAX request to the server can fully modify the displayed content. In
both cases, a new version of a page will be available without changing the URI [3].

JavaScript is a lightweight scripting language that has become increasingly popular.
Currently, it is the most used front-end programming language on the Web, and 94 % of
the top 10,000 websites visited use it [4]. Nevertheless, recent research indicates that less
than half of modern web applications are accessible to people using screen readers [5],
and that use of JavaScript and client-side code execution can decrease accessibility for
people with disabilities in general [6], [7], [8], [9].

This project aims at making it easier to create accessible RIAs using existing
standardized technologies. More specifically, we focus on the following research
questions:

This paper was presented at the NIK-2015 conference; see http://www.nik.no/.

RQ 1: What specific problems exist with RIA accessibility?

RQ 2: What can be done to avoid RIA accessibility problems?

2 Web accessibility issues
The nature of the Web has changed dramatically over the years. From resembling physical
documents conveying static information, the Web has become increasingly interactive and
dynamic [6]. While the Web has become more technologically advanced, websites (and
IT systems in general) now play a crucial role in our society and daily life [10]. The
Web can simplify our recreational activities and aid us in our mandatory tasks associated
with our duties as citizens. In addition, software programs have become indispensable
in our professional as well as educational environments. Software programs, websites
and applications targeted at a broad audience should be usable for all target users, which
means people of all ages and backgrounds, as well as physical and cognitive abilities.
Statistics from the World Health Organization (WHO) reveal that 12 % of the population
in high-income countries has some kind of disability [11]. This is a user group of
significant size, and not a homogenous one. It grows as the population grows older, and
issues vary in severity. Further, people with disabilities is not just one particular segment.
They exist in all segments and are just as diverse and different as able-bodied people.

The World Wide Web Consortium (W3C) defines Web accessibility as follows:

Web accessibility means that people with disabilities can perceive, under-
stand, navigate, and interact with the Web, and that they can contribute to the
Web.

Accessible websites can also be a direct result of good design. Achieving good design
of websites requires understanding some core matters; what you are designing for and
the purpose of your site, your users’ needs, and what visitors really wish to achieve using
your site.

Accessibility can be seen as a subset of usability. Accessibility is a continuum
and changes according to the technology we depend on. However, for users of
assistive technology (AT) there are some core issues for each specific user group that
does not change even if the technology does. As an example, blind users need to be able
to access equivalent content to images, and people with limited physical mobility will
benefit from a minimal amount of links to tab through [9].

3 Methodology
The goal of this project was to start the process of creating an understandable and easily
applicable set of guidelines for developing accessible RIAs. This tool should be easy
to grasp and to apply during a development process. It should have a clear focus on
issues concerning dynamic and interactive applications. There is a particular focus on
how to bring accessibility into the development process. A developer knowing little (or
nothing) about accessibility should be able to quickly get an overview and understand
what is needed to secure accessibility within this scope. The expected outcome of this
project was an in-depth theoretical knowledge of how to create accessible RIAs using
standardized technologies.

The methodology has been divided into five parts:

1. Surveying the existing research literature, studying RIA accessibility issues that
have been discovered so far.

2. Surveying existing suggestions for solutions to current RIA accessibility issues.

3. Creation of guidelines aimed at smoothing the process of RIA accessibility.

4. Evaluation of guidelines to examine what works and what does not work.

5. Modifying the guidelines, based on the results from the evaluation.

Studying accessibility issues and solutions
A literature survey was conducted to discover problems with RIA accessibility. Based on
the findings in the existing literature, a distinction was made between:

• Social issues: e.g. attitude towards accessibility among web developers, managers,
customers and other stakeholders.

• Tool issues: problems with automatic testing tools and guidelines.

• Issues directly linked to RIAs: issues concerned with the dynamic and interactive
nature of these applications and the problems this causes for users interacting with
an interface.

The literature search was performed searching the following scientific databases:
ACM Digital Library, IEEE Xplore, ScienceDirect, SciFinder and Web of Science. To
also cover additional relevant material not accessible through these sources, the search
was also performed in Google Scholar and Google. Search queries include:

• Rich internet applications AND accessibility

• Rich internet applications AND accessibility AND challenges

• Rich internet applications AND accessibility AND solutions

• HTML5 AND accessibility

• JavaScript AND accessibility

In addition, the names of renovned accessibility experts (and authors discovered in the
search process) were used as search criteria.

Creating guidelines
The process of creating the guidelines began with sorting the material from the literature
study and presenting it in a way that is helpful for development teams working with
accessibility. This means answering the following questions:

1. Which requirements need to be fulfilled for a RIA to be (considered) accessible?

2. How do we assure that these requirements are fulfilled?

The literature survey pinpointed problems with updates not being detected, non-
existing semantics, problems with keyboard navigation, pop-up windows and over-
engineered interfaces as typical RIA issues. However, there was also broad agreement
among scholars and the IT industry of that it should be possible to solve these
problems. Some examples of solutions reappearing in the literature are using WAI-
ARIA, using progressive enhancement and unobtrusive JavaScript, test extensively and
think accessibility from the beginning of a project. These suggestions formed the basis
for the guidelines.

There was a focus on making the guidelines as specific a s p ossible. T he material
was first sorted into two main themes; technology and p rocess. Further, the material was
categorized based on what is recommended, how to execute the recommendations, why
it is recommended and finally, w ho r ecommends i t. T he fi rst tw o qu estions fo cus on
specific advise and how to implement these suggestions and are placed in the guidelines.
The second two questions are more concerned with the validity of the advise. It was
considered to provide explanations of validity within the guidelines. However, to keep
the guidelines as short and readable as possible, this was left out in the first version.

Evaluating and updating the guidelines
Due to time limitations, this project focused on evaluating the usability of the
guidelines and not their reliability when it comes to ensuring accessibility. The
participants were four developers with different levels of accessibility
knowledge, and one accessibility expert. All participants were used to working
with guidelines. The participants were sent the guidelines some weeks before
the interviews. To get as much as possible out of the participants, the interviews
was modified to simply allowing the participants to reflect on specific questions
while reviewing the guidelines, before the interviews took place. It was expected
that this would result in deeper reflections and expressed thoughts that could be
discussed in more detail during the interviews. This strategy proved successful, as it
resulted in natural conversations about the guidelines and what reflections each
participant had made in the beginning of each interview before moving on to the
interview guide. The discussions touched upon many of the planned questions, and in
most cases the interview guide served as a way to summarize and wrap up the
conversation and make sure everything was covered. Based on the interviews a list of
suggestions for changes was prepared. What changes to make when creating a new
version of the guidelines were chosen from this list, based on what were considered
critical weaknesses and doable within the scope of this project.

4 The guidelines
In this section the guidelines are presented, along with some explanations and
reflection justifying each guideline. The full version is available online at http://
accessibilityagent.no/guidelines.

Have accessibility expertise on the team.
To use tools and guidelines reliably and effectively and successfully evaluate or develop
accessible websites and applications, accessibility expertise may be required. This has to
do with the complexity of accessibility issues [12], [13], [14], [15].

Include accessibility from the beginning of a project.
Testing and finding workarounds for accessibility can be more time-consuming than
designing for accessibility from the beginning [14]. Having accessibility as an integral
aspect of the design process and not an add-on or separate activity will improve the

quality of the end result [16]. Hence it is recommended to introduce accessibility from
the beginning of a project and make it a priority throughout the development process.

Communicate accessibility within the team.
It is important that everyone on the development team understands that accessibility is
interdisciplinary, why accessibility is important and how it affects different sides of web
development. Exactly how accessibility is communicated may be different for each team
and each project. An introduction course or a seminar could be useful. Seeing someone
with a disability test the system under development might be an eye-opener regarding the
user perspective. It could increase knowledge of how to enhance the experience of these
users while at the same time highlight the human aspect of accessibility. To make sure
decisions made on the basis of accessibility is maintained, it is useful to explain this to
the programmers so it is not overlooked in the implementation.

Test for accessibility.
Testing is fundamental in any development process. It is good practice to test for
accessibility on an equal basis as usability or user experience. It is essential to start
testing early in the process [14]. Testing with one user early is better than testing 50
near the end [17]. It is recommended to continue verifying accessibility at key stages and
testing throughout the process (W3C, 2011). The more often testing is done, the more
certain developers can be of the quality of their product [9].

Use existing principles for good design.
Creating accessible interfaces really boils down to good design practice, well-formed
code, solid information architecture, accessible form validation and error recovery. This
will ground the designs in best practices and therefore bring extra benefits such as more
future-proof, interoperable applications and websites [9].

Use WAI-ARIA mark-up.
WAI-ARIA is an accessibility-focused language that can bridge the semantic accessibility
gap in projects [9]. Studies have shown that WAI- ARIA enhances accessibility [1]. WAI-
ARIA supplies an application with the semantic metadata it needs to communicate well
with AT, enabling user agents and browsers to understand the semantic mark-up [6], [18],
[8].

WAI-ARIA also provides semantics that currently does not exist in other languages.
One example is the properties connected to live regions, that ensure that updates are
detected by AT. Notification based on a couple of simple rules can save considerable
confusion because WAI-ARIA can alert the user if AJAX has updated any part of the
page [14].

Follow the HTML5 standard.
Using HTML5 is recommended because its rich semantics creates a good structure. It
also offers advanced input types and well-functioning integration with scripts [18]. Using
HTML5 has some of the same benefits as adding WAI-ARIA [9]. Research show that
websites made with HTML5 often are more accessible than websites developed based on
earlier standards [19].

Combine WAI-ARIA and HTML5.
Many WAI-ARIA roles are similar to HTML5 elements. Using these in conjunction is
a way of making applications backwards compatible with legacy versions of AT. WAI-
ARIA support is a part of the HTML5 specification and should therefore validate without
problems. Previous HTML versions does not validate with WAI-ARIA. There are also
certain correspondences between the two specifications in the HTML5 spec and some
elements have built-in WAI-ARIA roles [20].

Use Progressive enhancement.
Progressive enhancement is a widely used method for creating web applications that
works on a variety of devices, user agents and connection speeds. It emphasizes
accessibility, semantic HTML mark-up, external style sheets and scripting technologies,
and uses web technologies in a layered fashion (Buckler, 2009). The content is marked
up by well-structured HTML, correctly labelled forms, descriptive alternative text and so
on. A separate CSS file is added for presentation. Finally, JavaScript is added to aspects
of the site to enhance functionality to user agents that can handle it correctly.

Progressive enhancement benefits users of AT because the basic content will always
be available and independent of the scripting to work. Also, it makes sure the code does
not break user agents that cannot understand JavaScript. In addition it ensures keyboard
accessibility as long as device-independent JavaScript methods are used. Progressive
enhancement also ensures backward compatibility with older browsers and AT. This may
solve some of the problems with use of old versions of browsers or equipment and
future proofing of technology [9]. In addition it is useful when it comes to scalability,
performance and maintenance [21].

Use unobtrusive JavaScript.
Unobtrusive JavaScript is particularly relevant for people whose browser lack JavaScript
support, or if JavaScript fails. Using JavaScript unobtrusively means only using it when
absolutely necessary and not making it a requirement for a functional application [22].
JavaScript is only added to enhance the user experience, make the application more
responsive to user needs and provide quick access to information. It is removed from
the HTML and tightens the separation between structure, presentation and behavior [21].

Unobtrusive JavaScript also means avoiding unnecessary movements on a web page,
unintuitive widget functionality and unfamiliar controls. It aims for giving users a more
seamless experience. Good technology should be invisible. Users will notice unwanted
behaviors and especially if something does not work as expected [9].

Use device-independent methods.
When used correctly to add behavior to an object, device-independent JavaScript methods
should ensure accessible interaction with any input device from eye-tracking and scanning
software to keyboard, mouse and touch (WebAim 2015). Use of device-independent
methods is a simple and powerful example of a more accessible way to add JavaScript to
content because it allows for making some events keyboard accessible through JavaScript
alone, not having to add WAI-ARIA elements [9].

Use accessible modal windows instead of pop-ups.
Modal windows are in many ways better and more usable than pop-up windows. They
open inside the webpage instead of in a new window and saves the trouble of dealing with
multiple windows. Modal windows do not hide behind the browser windows, which could
easily make the users miss them entirely. They grab attention, darken the background and
allows users to effectively focus on the tasks in the modal window. In addition they match
the website, which makes them look connected to the site and seem less like pop-up ads.
This seems safer and more secure. Creating a modal dialog that is fully accessible with
WAI-ARIA requires some work, but is achievable (Zehe, 2015). Nevertheless, modal
windows should only be used when the purpose is to completely take the user’s focus and
attention off the browser window to the modal window (UX Movement, 2011).

Use technology that facilitates accessibility.
Technology that facilitates accessibility should in theory make it easier to quickly ensure
accessibility without applying time-consuming tools and guidelines, doing extensive
accessibility testing, or even knowing much about accessibility. However, this technology
is far from perfect at this point.

Toolkits and frameworks
Toolkits and frameworks enable faster and easier Web 2.0 application development. Some
researchers believe the immediate challenge related to accessibility and RIA is building
Web 2.0 development frameworks and technologies with a greater degree of WAI-ARIA
support so that developers do not have to be experts in what constitutes accessibility. The
efficiencies of accessible widget libraries and platforms cannot be underestimated, mainly
because they often have already conquered issues between platforms and browsers.
Although using these frameworks can be a great benefit, it is important to accurately
wire and set the properties of accessible UI widgets [14], [1].

Web components
Web components facilitate accessibility because they can define widgets with a level of
visual richness and interactivity not possible with CSS alone. It also offers an ease of
composition and reuse not possible with script libraries today. They can be used to
create custom elements and extend existing HTML elements with built-in behaviors. Web
components are well supported in AT. Screen readers can access content in Shadow DOM
without problems and the Shadow DOM is navigable by keyboard [20], (Sutton, 2014).

However, Web components will only be as accessible as they are designed to be. It
is essential that developers establish a component’s accessibility, and make changes if
needed. Because anyone can make a Web component, it is likely that the quality will be
low on many of them. WAI-ARIA information and tabindex should be added to custom
elements. Given that the point of Web components is to add new types of objects, via
style and scripts that are not yet directly supported by the language of the page, applying
WAI-ARIA is very appropriate [20].

5 Results from the evaluation
This chapter presents the positive and negative feedback from the interviews and some of
the suggestions for changes to the guidelines.

Positive feedback
The guidelines were viewed as useful, understandable, reliable and more manageable
than existing guidelines. It was believed that they could contribute to build accessibility
competence and ensure more accessible applications. Especially the process-oriented
guidelines were very much appreciated and viewed as an excellent project methodology.

Suggestions for changes
Several suggestions for changes to the guidelines were made. Many were quite detailed
and straight forward: providing an introduction to the guidelines, highlighting the
exceptional qualities of WAI-ARIA and also to comment specific problems with WAI-
ARIA. This article will in the following focus on the suggestions for changes that are
most interesting to discuss and may reveal some underlying perceptions of accessibility.

Explain how guidelines benefit accessibility
It was suggested to have a section under each guideline, explaining how this guideline
will contribute to accessibility. Tools should promote knowledge transfer and deepen the
understanding of accessibility [14]. It was believed that explanations would increase the
guidelines’ usefulness and there is reason to believe that this will increase the level of
learning and ability to build accessibility competence. This also makes it easier to explain
to e. g. clients and management why one is doing something. It is also more difficult
not to do something if its merits are known. These findings support previous studies of
WCAG showing that when developers do not understand why they should use a guideline,
the motivation to apply it decreases [23].

Prioritize and time estimate the guidelines
It was chosen to not indicate any priority ranking of each guideline, as the guidelines have
not yet been tested for reliability. This means it cannot be established if some are more
important that others, and if so, which ones. Based on the feedback from the participants
in this study, priority information should be included. The potential benefit of giving
priority information, is that it stops developers from just doing the easy parts and quick
fixes and ignore the more complex issues.

On the other hand, giving a prioritized list could also be interpreted as some things
do not really need to be done. In addition, prioritizing these guidelines may prove
difficult because of the comprehensiveness of many of the guidelines and the fact that
they address different types of users and situations. They are all designed to be essential
to accessibility. Lastly, doing a general prioritization may not be the best strategy. In
different projects, different things will be important. Doing an individual prioritization
may be more useful.

It may be smart to estimate time needed to fulfil each guideline because the web
development process is often deadline-oriented. If something can be done quickly, or
time spent can be predicted, it is more likely to be taken into consideration. On the other
hand, this needs an extensive study to be achieved. Time spent on the guidelines would
have to be logged many times. It is also highly likely that time spent will depend on type
of project and level of accessibility knowledge of team members. It could be argued that
it is better not to estimate time, rather than estimating wrongly. Lastly, time estimation
might result in favoring the guidelines that can be rapidly applied. Nevertheless, it would

be interesting looking further into these issues, as they were much sought after by the
participants in this study, and may improve the quality and usability of the guidelines.

Adjust level of detail
The level of detail in how each guideline is explained, differs between the guidelines in
the first version. Some are relatively short, while others are described in more detail. It
was suggested to adjust this, to make all guidelines have approximately the same level
of detail. The argument was the guidelines described in more detail, would seem more
important than the ones with shorter descriptions, which are generally not the case. Our
response to this suggestion, is that it is very challenging, if not impossible, to balance
the level of detail of all guidelines so that they match exactly. This is because some
issues need more detailed explanations to be comprehensible, while other topics can
be described in very few words without loosing meaning. As an example, explaining
how to bring accessibility into the web development process is a more diffuse issue
than how to technically ensure accessibility. It will therefore be a natural consequence
that the process-oriented guidelines are less specific and detailed. It could further be
argued that some guidelines serve more as reminders to web developers rather than giving
new information about accessibility. It would not be necessary to explain to a front-end
developer how to use HTML5, or an interaction designer what good design practices are.
It is natural that the guidelines focus on the aspects of accessibility that are outside of web
developers’ general competence area: WAI-ARIA, testing for accessibility, progressive
enhancement and unobtrusive JavaScript. This might give a sense of building on existing
knowledge when working with accessibility, and it highlights how accessibility in fact is
a part of usability.

Guidelines that are extensively explained can make it easier for a developer to
understand exactly what needs to be done, and how to technically achieve it. If so, a
high level of detail could make the guidelines more usable. Many details can also make
the guidelines too long and comprehensive. Too much detail in the technology-oriented
guidelines might make them less transferable to future projects, or even ongoing projects
not using the technology addressed in the guidelines. Further, a very detailed process
description may not be useful or even possible, as every process is different.

Include other areas of web development
It was pointed out that there is little in the guidelines about interaction design, graphic
design and information architecture. While these areas are certainly relevant for achieving
accessibility, they are not in the scope of this project. It may have caused some confusion
that a guideline called Follow existing principles for good design has been included.
This guideline could be removed altogether because it is outside the scope. However,
it has been kept for two reasons. Firstly, reminds developers that much of their existing
competence is relevant for accessibility. Secondly, it is a reminder for future development
to include more about these areas in coming versions. For now, there is a set of
technology oriented guidelines and process oriented guidelines. In the future, design-
oriented guidelines may also be included.

Make a check-list offering more information if needed
There was a general agreement that the most pedagogical way of presenting the guidelines
is as a check-list which can be expanded to provide further information, also including

links to information from other sources. Bullet points should present the most important
aspects. The guidelines would then function on two levels. The check-list would function
as a tool to make sure everything is remembered and the guide would offer in depth
guidance on each point. It was thought that this increases usability because developers
can efficiently g o t h rough t h e g u idelines a n d l o ok f u rther i n to t h e g u idelines t h at are
relevant for them.

6 Conclusions and further work
This chapter reflects o n t he fi ndings, di scusses th e im portance of th is wo rk an d th e next
steps in this process.

Reflection on findings
This study has uncovered many RIA accessibility issues, but just as many suggestions
for solutions. These solutions has been processed into guidelines aimed at creating more
accessible web applications. The guidelines have been evaluated by web developers who
have commented on both strengths and weaknesses.

The most prominent suggestions for changes to the guidelines, like the requests for
time estimates and prioritized lists, makes us wonder if some of the most important
issues are related to attitudes towards universal design in the current IT industry. Time
is always of essence in a development process, but it may seem like there is a common
attitude that universal design is too expensive and time-consuming, although a lot simply
has to do with knowledge and training of the developers. We speculate if there is a
general resistance against investing time and money in learning the skills of developing
accessible IT solutions, but hope that the industry soon will see the benefits of acquiring
this knowledge.

Contribution to the research field
To our knowledge, this is the first attempt to provide a set of accessibility guidelines
focusing solely on front-end development with JavaScript, HTML and CSS.
Other accessibility guidelines, such as WCAG and ATAG have different and
larger focus areas. This contribution is important, because it focuses on the
most complex areas of web development and accessibility; maintaining
accessibility in highly dynamic and interactive applications.

The literature review performed as a part of this project, shows that there already is
quite a lot of knowledge about the technical aspects. It is therefore the authors’ belief that
the most important contribution to the web accessibility research field will be related to
the process-oriented guidelines.

Other fields within web development like programming, graphics, interaction design
and information architecture are well established and well integrated in the web
development process. Accessibility does not have that traction yet. It seems there
are uncertainties as to how to integrate it into the process. This study has strong
indications for a need for process-oriented accessibility guidelines. All participants
genuinely appreciated this and mentioned they had not seen anything like that, including
the accessibility expert. This project has also started the work of creating a set of process-
oriented accessibility guidelines and has made several suggestions for continued work
with these guidelines.It is highly likely that making the process of accessibility smooth
and easy will solve many of the social issues with web accessibility, remove uncertainties

and make accessibility a natural part of the web development process in line with usability
and other areas of development.

Future work
Although a lot of work was done to update the guidelines after the evaluation, not all
the suggestions for changes were managed before finishing this project. Some things
that are left should be done before the next round of interviews, for example providing a
lengthier explanation of why each guideline is good for accessibility and the consequences
of following it. Some suggestions should be further studied before making a decision of
whether or not to place them in the guidelines, for example the extent of the issues with
<article> and <section> and use of JavaScript to hide content and if or how it benefits
accessibility. This should be studied before the next round of interviews.

Some issues that have emerged during the evaluation of these guidelines require
extensive further studies across several iterations of guideline development. These are
reliability of the guidelines, prioritization and time estimation of guidelines, guidelines
related to other aspects of web development and further development of the process-
oriented guidelines. It is the authors’ believe that it is particularly important to continue
studies and development of the process oriented guidelines.

References
[1] Juliana Cristina Braga, Rafael Jeferson Pezzuto Damaceno, Rodrigo Torres Leme,

and Silvia Dotta. Accessibility study of rich web interface components.

[2] Ramón Voces Merayo. Rich internet applications (ria) y accesibilidad web.
Hipertext. net, (9):2, 2011.

[3] Nádia Fernandes, Ana Sofia Batista, Daniel Costa, Carlos Duarte, and Luís Carriço.
Three web accessibility evaluation perspectives for ria. In Proceedings of the 10th
International Cross-Disciplinary Conference on Web Accessibility, page 12. ACM,
2013.

[4] JavaScript usage statistics, 2014 (accessed March 17, 2014). http://trends.
builtwith.com/docinfo/Javascript.

[5] Alex Nederlof, Ali Mesbah, and Arie van Deursen. Software engineering for the
web: the state of the practice. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 4–13. ACM, 2014.

[6] Andy Brown, Caroline Jay, Alex Q Chen, and Simon Harper. The uptake of web
2.0 technologies, and its impact on visually disabled users. Universal Access in the
Information Society, 11(2):185–199, 2012.

[7] Francisco J Garcia-Izquierdo and Raul Izquierdo. Is the browser the side for
templating? Internet Computing, IEEE, 16(1):61–68, 2012.

[8] Lourdes Moreno, Paloma Martínez, Belen Ruiz, and Ana Iglesias. Toward an
equal opportunity web: applications, standards, and tools that increase accessibility.
Computer, 44(5):18–26, 2011.

[9] Joshue O Connor. Pro HTML5 accessibility. Apress, 2012.

[10] Walter Kern. Web 2.0-end of accessibility? analysis of most common problems
with web 2.0 based applications regarding web accessibility. International Journal
of Public Information Systems, 4(2), 2008.

[11] WHO. World report on disabilities, 2011. http://whqlibdoc.who.int/
publications/2011/9789240685215_eng.pdf?ua=1.

[12] Giorgio Brajnik. Validity and reliability of web accessibility guidelines. In
Proceedings of the 11th international ACM SIGACCESS conference on Computers
and accessibility, pages 131–138. ACM, 2009.

[13] Jennifer Mankoff, Holly Fait, and Tu Tran. Is your web page accessible?: a
comparative study of methods for assessing web page accessibility for the blind.
In Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 41–50. ACM, 2005.

[14] Shari Trewin, Brian Cragun, Cal Swart, Jonathan Brezin, and John Richards.
Accessibility challenges and tool features: an ibm web developer perspective.
In Proceedings of the 2010 international cross disciplinary conference on web
accessibility (W4A), page 32. ACM, 2010.

[15] Yeliz Yesilada, Giorgio Brajnik, and Simon Harper. How much does expertise
matter?: a barrier walkthrough study with experts and non-experts. In Proceedings
of the 11th international ACM SIGACCESS conference on Computers and
accessibility, pages 203–210. ACM, 2009.

[16] Alan Foley and Bob Regan. Web design for accessibility: Policies and practice.
AACE Journal, 10(1):62–80, 2002.

[17] Steve Krug. Don’t make me think: A common sense approach to web usability.
Pearson Education India, 2005.

[18] Leonelo Dell Anhol Almeida and Maria Cecília Calani Baranauskas. Accessibility
in rich internet applications: people and research. In Proceedings of the 11th
Brazilian Symposium on Human Factors in Computing Systems, pages 3–12.
Brazilian Computer Society, 2012.

[19] Eun-Ju Park, Yang-Won Lim, and Han-Kyu Lim. A study of web accessibility of
websites built in html5-focusing on the top 100 most visited websites. International
Journal of Multimedia and Ubiquitous Engineering, 9(4):247–256, 2014.

[20] B Lawson and S Faulkner. Html5 and accessibility. MSDN Magazine, 2011.

[21] Tim Wright. Learning JavaScript: A Hands-On Guide to the Fundamentals of
Modern JavaScript. Addison-Wesley, 2012.

[22] Russ Ferguson and Christian Heilmann. Beginning JavaScript with DOM Scripting
and Ajax: Second Editon. Apress, 2013.

[23] Eduardo Hideki Tanaka and Heloísa Vieira Da Rocha. Evaluation of web
accessibility tools. In Proceedings of the 10th Brazilian Symposium on on Human
Factors in Computing Systems and the 5th Latin American Conference on Human-
Computer Interaction, pages 272–279. Brazilian Computer Society, 2011.

