
Search-based composed refactorings

Erlend Kristiansen1, Volker Stolz1,2∗
1: Institutt for informatikk, Universitetet i Oslo, Norge

2: Institutt for data- og realfag, Høgskolen i Bergen, Norge
stolz@ifi.uio.no

Abstract
Refactorings are commonly applied to source code to improve its
structure and maintainability. Integrated development environments
(IDEs) such as Eclipse or NetBeans offer refactoring support for various
programming languages. Usually, the developer makes a particular
selection in the source code, and chooses to apply one of the refactorings,
which is then executed (with suitable pre-condition checks) by the IDE.

Here, we study how we can reuse two existing refactorings to
implement a more complex refactoring, and use heuristics to derive
suitable input arguments for the new refactoring. We show that our
combination of the Extract Method and Move Method refactoring can
automatically improve the code quality on a large Java code base.

1 Introduction
According to Fowler, refactoring is “a change made to the internal structure of
software to make it easier to understand and cheaper to modify without changing
its observable behavior” [2]. For object-oriented programs, relevant measures of
software quality for example include the amount of coupling to other classes (how
many “partners” a class needs to achieve its functionality) and depth of navigation
paths: the Law of Demeter [5] prescribes that accesses and calls should only be
to direct members of an object, and use intermediate methods to traverse the
object graph. As we will here concern ourselves with programs written in the Java
language, the latter rule can be understood as not using expressions such as “x.y.z”
or “a.getB().getC()”, but instead introducing helper methods. Those measures
decrease the complexity of the methods, at the less important cost of an increased
number of methods. This leads to path expressions with only a single dot.

In Section 2, we illustrate our “Extract and Move Method”-refactoring, and show
how it is composed out of two existing refactorings. We include remarks on the
formal correctness of the refactoring. After that, we describe in Section 3 our analysis
of Java source code to derive suitable input for our refactoring. In Section 4, we
evaluate quality and performance of our approach, based on refactoring the Eclipse
JDT source code. Section 5 concludes with related and future work.

∗Partly funded by the EU project FP7-610582 (Envisage).
This paper was presented at the NIK-2014 conference; see http://www.nik.no/.

stolz@ifi.uio.no
http://www.envisage-project.eu


Before

1 class C {
2 A a; B b;
3 X x;
4 void m() {
5 x.y.foo();
6 x.y.bar();
7 }
8 }
9

10 class X {
11 Y y;
12 /* ... */
13 }
14

15 class Y {
16 void foo(){ ... }
17 void bar(){ ... }
18 }

After

1 class C {
2 A a; B b;
3 X x;
4 void m() {
5 x.fooBar();
6 }
7 }
8

9 class X {
10 Y y;
11 /* ... */
12 void fooBar() {
13 y.foo();
14 y.bar();
15 }
16 }
17

18 class Y ... /* unchanged */

Listing 1: The CBO of class C improves from 4 to 3 through refactoring.

2 The Extract and Move-Method Pattern
First, we illustrate on an example how our Extract and Move Method refactoring
uses Cockburn’s Protected Variations-pattern [11] to improve the design of the code.
For this, we will manually derive suitable selections and targets for delegation. We
show how the refactoring impacts the relevant software quality metrics. Then, we
show how to decompose our refactoring into two phases, which are both already
implemented in the Eclipse Java Development Tools.

The example in Listing 1 shows on a very simple Java example the intended
workings of our refactoring. On the left-hand side in method m in class C, we find
two consecutive statements that call methods on the same member.

Arguably, the statement sequence would better be in a method of class X,
thus avoiding repeated indirection—note that we do not expect any performance
improvements, but just want to improve readability of the code. The right-hand
side of the listing shows the intended outcome: the original statement sequence
has been replaced with a single method call to a new method fooBar in class X of
the corresponding member x. In the target method, the navigation path has been
adjusted correspondingly. Repeated application of the refactoring could then replace
the body of X.fooBar() with the invocation of another new method Y.fooBar()
where we will then find the two method calls on the current object.

This example also serves to illustrate how the Coupling Between Object Classes
(CBO) metric [1] improves in this case. An object is coupled to another object if one
of them acts on the other by using methods or instance variables of the other object.
This relation goes both ways, so both outgoing and incoming uses are counted. Each
coupling relationship is only considered once when measuring CBO for a class.

Before refactoring the class C, it has a CBO value of 4. The class uses members
of the classes A and B, which accounts for 2 of the coupling relationships of class C.
In addition to this, it uses its variable x with type X and also the methods foo and
bar declared in class Y, giving it a total CBO value of 4.

With respect to the CBO metric, the refactoring action accomplishes something
important: it eliminates the uses of class Y from class C. This means that the class
C is no longer coupled to Y, only the classes A, B and X. The CBO value of class C is



therefore 3 after the refactoring, while no other class have an increased CBO.
The example shown here is an ideal situation. Coupling is reduced for one class

without any increase of coupling for another class. There is also another important
point: to reduce the CBO value for a class, we need to remove all its uses of another
class. This is achieved for the class C in Listing 1, where all uses of class Y are
removed by the Extract and Move Method refactoring. However, we will later see
that the refactoring may move dependencies from one class to another, possibly
resulting in a net increase.

Two phases: extract and move
Our intended refactoring can be accomplished in two phases. In the first phase, we
can extract the selected fragment into a new private method within the same class,
passing additional context that it relied on (such as local variables) as arguments.
In the second phase, we move the method declaration into a more suitable class (see
Section 3), and update the target of the call in the place of the original fragment.

Both refactoring steps are already available as individual refactorings in Eclipse.
This saves us a cumbersome and certainly error-prone (re)implementation of our
desired refactoring. Additionally, this decomposition allows us to better analyse a
failing refactoring (i.e., either the result no longer compiles, or even a crash in the
refactoring engine).

For the first phase, we use the JDT’s ExtractMethodRefactoring class. It
mainly requires as arguments a compilation unit (the Eclipse-internal representation
of Java classes), offset and length within this unit of the code that should be
extracted, and the method name to use for the new method in the current class.
Currently, we generate names, which consequently lack the semantic hints from user-
provided names. In the second phase, the MoveInstanceMethodProcessor requires
a handle on the method to be moved (straight-forward to obtain and unique, as
we just created it in the previous step), and a variable binding from a declaration
as target. Both refactorings offer additional options for fine-tuning, e.g. wrt. to
visibility, that we elide here.

The life-cycle of both refactorings is similar and is managed by Eclipse’s
language-independent toolkit LTK [12]: first, relevant pre-conditions are checked,
i.e. whether the refactoring can be successfully executed on the given arguments.
After that, the actual change is executed. The toolkit also provides other interactive
editing support such as undoing/redoing.

Note on correctness
To the attentive reader, it is obvious that the proposed refactoring is not always
correct in the sense that preserves the original behaviour. Let us consider the
following example in Listing 2. Note that the method m(C c) of class X assigns
to the field x of the argument c that has type C.

Before the refactoring, the methods m and n of class X are called on different
objects (see lines 5 and 7 of the original class C in Listing 2). Yet after the refactoring,
they are called on the same object. The method f of class C is now calling the method
f of class X (see line 5 of class C in Listing 3), and the program now behaves different
than before.

Even though we do not have a solution yet to avoid this problem (except only
refactoring on final fields and local variables), let us make the following remarks:



1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.m(this);
6 // Not the same x.
7 x.n();
8 }
9 }

public class X {
public void m(C c) {

c.x = new X();
// If m is called from
// c, then c.x no longer
// equals ’this’.

}
public void n() {...}

}

Listing 2: Refactoring this example does not preserve behaviour.

1 public class C {
2 public X x = new X();
3

4 public void f() {
5 x.f(this);
6 }
7 }

1 public class X {
2 ...
3 public void f(C c) {
4 m(c);
5 n();
6 }
7 }

Listing 3: Result of applying the refactoring to method f from Listing 2.

firstly, analysing this particular situation requires a precise aliasing analysis, which
is especially difficult for an object-oriented language with virtual method calls, and
for an open system where not all code paths are statically known[7]. Secondly,
the problem already exists with manually refactored code. A developer makes a
judgement based on inspection of the code. In our automated setting, we just
compound the issue through the scale, or number, of refactorings that we apply. We
point out a potential solution to this problem in our conclusion in Section 5, where
we harness assertions to at least have safeguards after the fact.

3 Searching for the Right Arguments
In the previous section, we hand-picked the sequence of statements that should
be extracted, and the target class corresponding to the member where the new
method should be created. These two dimensions can usually be easily identified by
a programmer for a given piece of code. Here however, our interest is in automatically
improving the quality of an entire code base. Therefore, we need an analysis which
identifies candidates and executes the refactoring on them. Even though a statement
can span several lines, in the following we will equate statements with lines for
simplicity. For control structures such as for, while or if-then-else, we also
consider their bodies/branches as part of the statement.

Text selections within method bodies
For a sequence of statements, the text selections that can be generated from it,
are equal to all its sub-sequences. Listing 4 shows the possible statement ranges
that can be derived from the different contiguous chunks of statement sequences in
the example. We indicate with shaded boxes the two different nesting levels; the
outermost, lighter-coloured level is the entire method body, and the darker boxes
indicated nested blocks within control statements.

Each nesting level of a method body can have many such sequences of statements.
The outermost nesting level has one such sequence, and each branch contains its own
sequence of statements. We additionally list all 23 possible valid text selections,
giving their start/end lines. Every regular statement can be its own sub-sequence,



1 class C {
2 A a; B b; boolean bool;
3

4 void method(int val) {
5 if (bool) {
6 a.foo();
7 a = new A();
8 a.bar();
9 }

10

11 a.foo();
12 a.bar();
13

14 switch (val) {
15 case 1:
16 b.a.foo();
17 b.a.bar();
18 break;
19 default:
20 a.foo();
21 }
22 }
23 }

Level 1 (10 selections):
{(5, 9), (11), (12), (14, 21), (5, 11),
(5, 12), (5, 21), (11, 12), (11, 21), (12, 21)}

Level 2 (13 selections):
{(6), (7), (8), (6, 7), (6, 8), (7, 8),
(16), (17), (18), (16, 17), (16, 18), (17, 18), (20)}

Prefixes with number of occurrences for selection (5,21):
{a(6), b(2), b.a(2)}

Unfixes for (5,21):
{a}

Listing 4: Source code with high-lighted, nested sequences (left), all possible sub-
sequences given with start/stop line-numbers (right) and prefixes/unfixes.

the break statements that manipulate the flow of control are ignored.

Identifying a suitable target
“Target” refers to the member that we will move the fragment to, and invoke the
method on. A target is chosen from a set of candidates that are calculated from the
selected statements. Here, we will only consider local variables or fields as potential
targets, although the practice can be generalised to method calls (especially in the
case of so-called “train wrecks” of method calls like getA().getB().m()).

We collect our set of candidates per selection using a visitor on the abstract
syntax tree (see [3] for implementation details). A candidate is also called a prefix,
because we are interested in the left-most component of navigation expressions.
Certain statements render a prefix subsequently unusable. We call the set of
unusable prefixes unfixes.

A common reason for a candidate to become an unfix is when it occurs on the
left-hand side of an assignment : in the relocated code, the updated write access
would be to the value this, which is not legal in Java. Also, any local variable
declared within a selection cannot be a prefix for the same reason, as the target
must be defined before the statements to move.

The second major source of unfixes is the restriction that, to actually apply the
move-step of the refactoring, we must be able to modify the source code of the target
class. Clearly this is not the case for any of Java’s standard classes, nor any classes
present only in binary form on the class-path. On the right of Listing 4, we show
the calculated candidates: the prefixes a, b and b.a occur, but a is also listed in the
unfixes due to being the target of an assignment, and unusable for the refactoring.

Among the remaining two candidates, we use the following heuristics to pick
the single target for our refactoring: we prefer the prefix that is most frequently
referenced within the selection. If two prefixes have equally many occurrences, we
take the first segment of the one with the largest number of segments. This favors



indirection, as it may lower coupling between classes. Here in our case, since the
prefixes b and b.a overlap, the choice thus resolves to delegating to member b.

Ruling out invalid selections
Certain constructs within a selection automatically disqualify either the selection or
a candidate, because the code after the refactoring would be invalid. The following
reasons are the most common causes why a selection is not valid input for the
refactoring during our case study:

• Calls to protected or package-private methods. The new method may need
increased visibility which can conflict with restricted visibility in a sub-class.

• Double class instance creation. Consider a field name of the enclosing class,
and the expression new A(new B(name)). If this expression is located in a
selection that is moved to another class, name will be left untouched, instead
of being prefixed with a variable of the same type as it is declared in, leading to
broken code (due to a bug in the underlying refactoring).

• Inner class. For a similar reason, the instantiation will break as during the move
the context of the instantiation has to be updated, or is not available.

• References to enclosing instances of the enclosing class. Ditto, relocated
code will no longer have access to “outer” members.

• Inconsistent return statements. When a selection contains a return
statement, then every possible execution path within the selection must end in
either a return or a throw statement.

• Ambiguous return values. The extracted fragment would have to return more
than a single value due to assignment statements to local variables.

• Other illegal statements/expressions. Any expression referring to super,
and statements changing flow of control like break/continue.

Due to the richness of the Java language this list is by no means complete. As any
oversight may lead to an easily detectable compilation error in the refactored code,
it is merely a matter of convenience to avoid those situations. In principle, if a
refactoring fails, we can roll back to the original code and try the next candidate.
Alas, we have not succeeded in implementing the composed refactoring with rollback-
support through the LTK due to technical limitations in the Eclipse-provided
frameworks (LTK & Java-specific refactorings). We invite the reader to refer to
[3, p. 62] for a detailed description of the technical issues we encountered.

4 Experiment on the Eclipse JDT UI source code
To lend reasonable credibility to our efforts, we show that on the one hand we are
able to automatically analyse and transform a substantial software project, and that
on the other hand the refactoring improves the design as expected. To this end, we
will analyse parts of the Eclipse source code. We have chosen the Eclipse JDT UI
project, because we believe that it is a good representative for professionally written
Java source, that many people have contributed to over the years. It comprises



Table 1: Statistics for refactoring the Eclipse JDT UI project.
Time used

Total time 98m38s
Analysis time 14m41s (15%)
Change time 74m20s (75%)
Miscellaneous tasks 9m37s (10%)

Numbers of each type of entity analyzed

Packages 110
Compilation units 2,097
Types 3,152
Methods 27,667
Text selections 591,500

Numbers for Extract and Move Method refactoring candidates

Methods chosen as candidates 2,552
Methods NOT chosen as candidates 25,115
Candidate selections (multiple per method) 36,843

Refactorings executed Total Extract Move

Attempts 2,552 2,483 2,469
Not fully executed 83 69 14

over 300,000 lines of code (excluding blanks and comments), with more than 25,000
methods. Furthermore, it comes with an extensive set of unit tests that we can use
to evaluate if the refactoring changes the behaviour.

Analysis, refactoring, and calculating the software metrics before and after take
time, and our resources limit the amount of source code that we can reasonably
evaluate our automation on. In addition, we also compare the result of the included
unit tests from before and after the refactoring, to make observations about any
changes in behaviour. The experiment has been carried out on a recent laptop with a
Intel CoreTM i5-3210M processor and 8 GB of RAM. Another smaller experiment of
applying the automated refactoring to our own code that implements the refactoring
can be found in [3].

Statistics
Table 1 shows the statistics of batch-refactoring the Eclipse JDT UI project from
the Eclipse GIT repository, branch R3_8_maintenance. 75% of the total time goes
into making the actual code changes. The time-consumers are here the primitive
Extract Method and Move Method refactorings. Included in the change time is the
parsing and precondition checking done by these refactorings, as well as textual
changes done to files on disk. All this parsing and disk access is time-consuming,
and constitutes a large part of the change time.

The pure analysis time, which is the time used on finding suitable refactoring
candidates, only makes up for 15% of the total time consumed. This includes
analyzing almost 600,000 text selections, while the number of attempted executions
of the Extract and Move Method refactoring is only about 2,500. So the number of
executed primitive refactorings is approximately 5,000. Assuming the time used on



Table 2: Results for analyzing the Eclipse JDT UI project, before and after the
refactoring, with SonarQube (bold numbers are better.)
Number of issues for each rule Before After

Avoid too complex class 81 79
Classes should not be coupled to too many
other classes (Single Responsibility Principle) 1,098 1,199

Control flow statements
should not be nested too deeply 1,375 1,285

Methods should not be too complex 1,518 1,452
Methods should not have too many lines 3,396 3,291
NPath Complexity 348 329
Complexity per function 3.6 3.3

miscellaneous tasks is used mostly for parsing source code for the analysis, we can
say that the time used for analyzing code is at most 25% of the total time. This
means that for every primitive refactoring executed, we can analyze about 360 text
selections. With an average of about 21 text selections per method, we can analyze
over 15 methods in the time it takes to perform a primitive refactoring.

Refactoring candidates
Out of the 27,667 methods that were analyzed, 2,552 methods contained selections
that were considered candidates for the Extract and Move Method refactoring. This
is roughly 9% of the methods in the project. These 9% had on average 14.4 text
selections that were considered possible refactoring candidates.

Executed refactorings
2,469 out of 2,552 attempts on executing the Extract and Move Method refactoring
were successful, giving a success rate of 96.7%. The failure rate of 3.3% stems from
situations where the analysis finds a candidate selection, but the change execution
fails. This failure could be an exception that was thrown, and the refactoring aborts.
It could also be that the precondition checking for one of the primitive refactorings
gives us an error status, meaning that if the refactoring proceeds, the code will
contain compilation errors afterwards, forcing the composite refactoring to abort.

Out of the 2,552 Extract Method refactorings that were attempted executed, 69
of them failed. This gives a failure rate of 2.7% for the primitive refactoring. In
comparison, the Move Method refactoring had a failure rate of 0.6% of the 2,483
attempts on the refactoring.

Quality metrics
We use the SonarQube analysis tool to calculate well-known software quality metrics
before and after the refactoring. As Table 2 shows, as expected, in general
complexity decreases, as we create around 2,500 smaller methods. However, we note
that coupling has actually increased—contrary to our expectations from Section 2.
SonarQube reports an increase from 1,098 to 1,199. Next, we investigate in a
concrete case where this deterioration comes from.

http://www.sonarqube.org


1 public class ShowActionGroup extends ActionGroup {
2 /* ... */
3 private void initialize(IWorkbenchSite site, boolean isJavaEditor) {
4 fSite= site;
5 ISelectionProvider provider= fSite.getSelectionProvider();
6 ISelection selection= provider.getSelection();
7 fShowInPackagesViewAction.update(selection);
8 if (!isJavaEditor) {
9 provider.addSelectionChangedListener(fShowInPackagesViewAction);

10 }
11 }
12 }

Listing 5: Portion of the ShowActionGroup class before refactoring.

Listing 5 shows a portion of the class ShowActionGroup from the JDT UI project
before it is refactored with the search-based Extract and Move Method refactoring.
Before the refactoring, the ShowActionGroup class has 12 outgoing dependencies.

During the benchmark process, the search-based Extract and Move Method
refactoring extracts the lines 5 to 10 of the code in Listing 5, and moves the new
method to the move target, which is the field fShowInPackagesViewAction with
type ShowInPackageViewAction. The result is shown in Listing 6.

1 public class ShowActionGroup extends ActionGroup {
2 /* ... */
3 private void initialize(IWorkbenchSite site,
4 boolean isJavaEditor) {
5 fSite= site;
6 fShowInPackagesViewAction.generated(
7 this, isJavaEditor);
8 }
9 }

1 public class ShowInPackageViewAction
2 extends SelectionDispatchAction {
3 /* ... */
4 public void generated(
5 ShowActionGroup showactiongroup, boolean isJavaEditor) {
6 ISelectionProvider provider=
7 showactiongroup.fSite.getSelectionProvider();
8 ISelection selection= provider.getSelection();
9 update(selection);

10 if (!isJavaEditor) {
11 provider.addSelectionChangedListener(this);
12 }
13 }
14 }

Listing 6: ShowActionGroup and ShowInPackageViewAction after refactoring.

After the refactoring, the ShowActionGroup has only 11 outgoing dependencies.
It no longer depends on the ISelection type. So our refactoring managed to get
rid of one dependency, which is exactly what we wanted. The only problem is, that
now the ShowInPackageViewAction class has got two new dependencies, the types
ISelectionProvider and the ISelection. The bottom line is that we eliminated
one dependency, but introduced two more, ending up with an overall program that
has more dependencies now than when we started out.

What can happen in many situations where the Extract and Move Method
refactoring is performed, is that the Move Method refactoring “drags” with it
references to classes that are unknown to the method destination. In those situations
where a destination class does not know about the originating class of a moved
method, the Move Method refactoring most certainly will introduce a dependency.
This is because there is a bug1 in the underlying move-refactoring, making it pass
an instance of the originating class as a reference to the moved method, regardless
of whether the reference is used in the method body or not.

We also note the suboptimal decision in Listing 6 to pass this as an argument
and use an indirection (which could be eliminated by another application of the
pattern) to access the field. Instead, the original formal argument site to the

1Eclipse Bug 228635 - [move method] unnecessary reference to source

https://bugs.eclipse.org/bugs/show_bug.cgi?id=228635


method could have been used. This example thus also illustrates how sensitive the
refactorings are to developers’ coding styles, as the refactorings are syntax-driven.
We cannot expect the refactoring logic to make complex decisions about aliasing—
while using the parameter here will be correct, note that in general, especially
for concurrently executed code, this decision may not be correct. In our opinion,
programmers should prefer to use local variables or parameters instead of fields
whenever possible, to enable exactly this type of refactorings. We conclude in
remarking that with a better choice of parameter, the complexity of the refactored
code would be lower, as one import less would be required.

Unit-test results and technical limitations
Alas, when running the automated refactoring on the code base, in many cases the
refactoring results in code that does not compile. This usually hints at missing
precondition checks either on our side, or on the side of the two component
refactorings. Arguably, refactorings should avoid producing broken code. Although
we have tried to avoid most of the problems created by compilation errors or crashes
by extending our precondition checks, there is still a substantial amount of errors in
the generated code for reasons that we still need to identify. As a consequence, we
have only been able to re-run those unit tests that refer to correctly compiled code.

Of the 5,822 test cases in the two provided unit test suites, we have thus only
been able to re-run 3,001 due to compilation errors in the refactored code. In those
tests, we found 2 new failures after refactoring, i.e., a unit test that passed before
refactoring, and not producing an expected result afterwards. We have inspected
the implicated code paths, but have not been able to ascertain how the refactoring
affected the outcome, due to our lack of domain knowledge for this particular code.

5 Conclusion and Related Work
We have presented a composite refactoring that extracts and moves statement
sequences from method bodies, with the goal to improve software quality metrics
by following the Protected Variations pattern. The refactoring can be applied
automatically to Java code in the Eclipse integrated development environment.

The experiment on part of the Eclipse source code revealed deficiencies in the
code that we rely on: the two individual refactorings for extraction and moving
occasionally throw exceptions or produce code that does not compile for certain
inputs. We try to mitigate this by checking preconditions particular to the observed
errors, and have reported three of them in the Eclipse bug tracker (see again [3]).

The choice of the “Extract and Move Method” refactoring was based on
observations in our own prototypical software development, where we frequently
found code benefitting from the refactoring. As Larman points out [4, p. 431], the
improvements decrease maintenance effort in the early stages of coding, but may
not be necessary in the presence of stable structural connections between classes.

We observed in Listing 4 that the per-method complexity decreases (as we are
splitting methods), yet coupling reported by the metrics tool per class did not
improve. We have shown that this is because of the required additional imports
in the target class for the refactoring. Here, a more fine-grained metric which
averages coupling per method could be developed that would show the benefit more
clearly. We have also not yet investigated by how much repeated application of the



refactoring improves the result. Instead of running our experiment on the arguably
mature Eclipse code base, we might expect to see a larger number of candidates and
improvements on source code in earlier stages of development.

The current heuristics of where to apply a refactoring is quite simple. In the
future, we would like to improve the analysis phase to identify more valuable
selections and candidates (those that yield bigger improvements in quality). This
is important, as although analysis is fast, executing a refactoring is the expensive
step, which (together with the inability to efficiently roll back) precludes speculative
execution to try different possibilities in the search for ideal candidates: at the
moment, we take a peep-hole view on statement sequences in individual methods.
It is straight-forward to construct an example where two seemingly equally suitable
candidates for a selection exist, yet the overall coupling will be differently affected
in each case due to the content of the target class.

Further future work includes creating assertions to ensure behaviour preserva-
tion. As pointed out in Section 2, our refactoring may currently change behaviour in
the presence of aliasing. Even though through assertions we cannot ensure correct
behaviour, at least they can notify us during unit tests (assuming sufficient cover-
age). The assertions can even serve as documentation within the source code for
which refactoring step introduced the erroneous behaviour. Even more ambitiously,
developers might then set out and discharge these assertions with a theorem prover.

Within the field of refactoring, the opinion about whether refactorings should
preserve behaviour is divided. While here we argue for the correctness of our
refactoring (and point out its limitations), proponents of the more relaxed view point
out that any erroneous behaviour should be captured through unit tests eventually.
As Fowler puts it: “If you want to refactor, the essential precondition is having solid
tests.” [2, p. 73]. In fact, Soares et al. [9], derive unit tests based on the applied
refactoring that is likely to uncover changes in behaviour.

A bottom-up approach is taken by Schäfer et al. [8] where they give a concise,
formal definition of some refactorings that they can translate easily and correctly
into code for the JastAdd attribute grammar framework for Java.

Automatic refactoring of code has been tried out with success at scale by Google
to migrate away from deprecated APIs [13].

O’Keeffe et al. [6] present an empirical study of different algorithmic approaches
to search-based refactoring. These algorithms generate a set of changes to a
program and then use a fitness function to evaluate if they improve its design or
not. The fitness function consists of a weighted sum of different object-oriented
metrics, whereas we are mostly guided by the CBO metric. The refactorings which
they applied however are on the structural level of classes (e.g. moving fields and
methods), and not the statement level.

Offering compositional refactorings instead of monolithic, wizard-based interfaces
as they are provided in the common IDEs has been the focus of a study by Vakilian
et al. [10]. These refactorings shall be accessed via keyboard shortcuts or quick-
assist menus and be promptly executed. The mechanism provides developers with
an option of performing small rapid changes instead of large changes with a lesser
degree of control. The authors hope this will lead to fewer unsuccessful refactorings.

Our work covers common Java language constructs up to Java 7, and could be
applied to related object-oriented languages. The upcoming language extensions in
Java 8 will require additional scrutiny both from the perspective of the argument



analysis, as will the existing refactoring code have to be updated.
All technical detail is available from [3], as is the Eclipse plugin that implements

the analysis and refactoring (both as binary and as source code).

References
[1] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6):476–493, 1994.

[2] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
1999.

[3] E. Kristiansen. Automated composition of refactorings. Master’s thesis, Dept.
of Informatics, University of Oslo, 2014. Available from http://www.mn.uio.no/
ifi/english/research/groups/pma/completedmasters/2014/kristiansen/.

[4] C. Larman. Applying UML and Patterns. Prentice Hall, 3rd edition, 2005.

[5] K. J. Lieberherr, I. M. Holland, and A. J. Riel. Object-oriented programming: An
objective sense of style. In N. K. Meyrowitz, editor, Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), pages 323–334. ACM Press, 1988.

[6] M. O’Keeffe and M. Ó. Cinnéide. Search-based refactoring: An empirical study.
Journal of Software Maintenance and Evolution, 20(5):345–364, 2008.

[7] B. Ryder. Dimensions of precision in reference analysis of object-oriented
programming languages. In G. Hedin, editor, Compiler Construction, volume 2622 of
Lecture Notes in Computer Science, pages 126–137. Springer-Verlag, 2003.

[8] M. Schäfer and O. de Moor. Specifying and implementing refactorings. In W. R.
Cook, S. Clarke, and M. C. Rinard, editors, Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA) ’10, pages 286–301. ACM, 2010.

[9] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program refactoring safer.
IEEE Software, 27(4):52–57, 2010.

[10] M. Vakilian, N. Chen, R. Z. Moghaddam, S. Negara, and R. E. Johnson. A
compositional paradigm of automating refactorings. In G. Castagna, editor, ECOOP,
volume 7920 of Lecture Notes in Computer Science, pages 527–551. Springer-Verlag,
2013.

[11] J. Vlissides, J. O. Coplien, and N. L. Kerth. Pattern Languages of Program Design,
volume 2. Addison-Wesley, 1996.

[12] T. Widmer. Unleashing the power of refactoring. https://www.eclipse.org/
articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/,
Feb 2007. Last accessed July 2014.

[13] H. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan. Large-scale automated
refactoring using ClangMR. In Proc. of the 29th Intl. Conf. on Software Maintenance,
pages 548–551. IEEE, 2013.

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/kristiansen/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/kristiansen/
https://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/
https://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/

	Introduction
	The Extract and Move-Method Pattern
	Two phases: extract and move
	Note on correctness

	Searching for the Right Arguments
	Text selections within method bodies
	Identifying a suitable target
	Ruling out invalid selections

	Experiment on the Eclipse JDT UI source code
	Statistics
	Refactoring candidates
	Executed refactorings

	Quality metrics
	Unit-test results and technical limitations

	Conclusion and Related Work

