
New Iterative Algorithms for Weighted Matching

Alexander Idelberger* and Fredrik Manne**

Abstract
Matching is an important combinatorial problem with a number of
practical applications. Even though there exist polynomial time solutions
to most matching problems, there are settings where these are too slow.
This has led to the development of several fast approximation algorithms
that in practice compute matchings very close to the optimal.

The current paper introduces a new deterministic approximation
algorithm named G3, for weighted matching. The algorithm is based on
two main ideas, the first is to compute heavy subgraphs of the original
graph on which we can compute optimal matchings. The second idea is
to repeatedly merge these matchings into new matchings of even higher
weight than the original ones. Both of these steps are achieved using
dynamic programming in linear or close to linear time.

We compare G3 with the randomized algorithm GPA+ROMA which
is the best known algorithm for this problem. Experiments on a
large collection of graphs show that G3 is substantially faster than
GPA+ROMA while computing matchings of comparable weight.

1 Introduction
The matching problem is an archetypical combinatorial problem in computer science
with a number of practical applications. Examples include areas such as community
detection [1], graph partitioning [2, 3], and network alignment [4].

We consider the maximum weighted matching problem where one is given an
undirected weighted graph G = (V,E,ω) with weights ω(e) > 0 for all e ∈ E. The
object is then to compute a set of non-adjacent edges such that the sum of the
selected edges is as large as possible. The best known algorithm for solving this
problem on a general graph has running time O(n(m+n logn)) where m= |V | and
n= |E| [5]. Still, this might be too slow for many applications, especially for large
graphs. Therefore, there has been extensive research in developing fast approximation
algorithms with linear or close to linear running time.

Such algorithms typically fall into one of two categories. The first is based on
initially computing a subgraph of large weight on which an optimal matching can be
found using dynamic programming. Examples of such subgraphs include only paths

This paper was presented at the NIK-2014 conference; see http://www.nik.no/.
*Institute for Theoretical Computer Science, University of Lübeck, D-23562 Lübeck, Germany.

Email: idelberg@informatik.uni-luebeck.de
**Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Email:

fredrikm@ii.uib.no

[6, 7], paths and cycles [8, 9], and trees [10]. The second category is based on finding
short augmenting paths by which to improve the current matching [8, 11].

As this last type of algorithms can be applied to any matching, it is possible to
start with an algorithm of the first type and then improve this using an algorithm of
the second type. In fact, the current best fast approximation algorithm uses this
method. It consist of first computing a matching through dynamic programming on
a subgraph consisting of heavy paths and cycles (GPA) and then selecting random
vertices on which to search for short augmenting paths (ROMA) [8]. Experiments
show that in practice this combined algorithm produces matchings very close to the
optimal solution.

In [9] an algorithm was developed by taking the union of two non-overlapping
matchings and then performing dynamic programming on the resulting subgraph of
paths and even length cycles. Using the standard Greedy algorithm to compute
the two initial matchings gave a final matching of comparable quality to GPA. In
this paper we expand further on this idea. We observe that the most time consuming
part of GPA is the sorting of the edges. Once this has been done, it is possible to
very efficiently compute a number of different matchings which can then be merged
together to form new even heavier matchings. For this we utilize a number of
existing matchings algorithms such as Greedy and GPA as well as new tree-based
algorithms. The resulting matchings are then combined together to develop new
deterministic algorithms. Experiments on a large number of different graphs show
that our approach gives matchings of comparable quality as GPA+ROMA while
using considerable less time.

The rest of the paper is organized as follows. Section 2 presents existing algorithms
and methods. In Section 3 we elaborate further on the merging idea and also give
several new tree-based matching algorithms, while results from experiments using
different combination of the existing and the new algorithms are presented in Section 4.
Finally, we conclude in Section 5.

2 Previous Work
In the following we present an overview of relevant algorithms for computing weighted
matchings. It is well known that one can compute a maximum weight matching in
linear time on graphs such as paths, cycles, and trees using dynamic programming.
For trees one performs a post order traversal while computing the best matching for
each vertex v when v is allowed to match with one of its descendant and the best
matching when v is unmatched. For details see [8],[10].

The first algorithm to exploit dynamic programming for general matching was
the Path Growing Algorithm (PGA’) [6, 7] that repeatedly grows a path from an
arbitrary unvisited vertex, each time following the heaviest edge to an unvisited
vertex. Once a path cannot be extended further dynamic programming is used to
find the optimal matching on the selected edges. The algorithm terminates when all
vertices have been visited, and runs in O(n+m) time.

The Global Path Algorithm (GPA) is an extension of PGA’ that also first builds
an intermediate graph H. However, here the edges are considered by decreasing
weight, and an edge is added to H as long as H still consists of paths and even
length cycles. Following this, a maximum weight matching is computed on H using
dynamic programming as described above. The running time of GPA is dominated
by the sorting of the edges which is O(m logn). We note that Greedy, PGA’, and

GPA all have approximation ratios of 0.5.
In [9] it was shown that, similar to GPA, one can compute an intermediate

graph consisting of paths and even length cycles by taking the union of any two
existing matchings. A scheme was proposed and tested where one computes two
non-overlapping matchings using the regular Greedy algorithm followed by dynamic
programming to compute the final matching as in GPA. Experiments showed that
this procedure gave matchings on par with those of GPA.

As the matching resulting from a dynamic programming step might not be
maximal on G, it is possible to post process any remaining edge with two unmatched
endpoints. One possibility is to add any such eligible remaining edge to the matching
when it is inspected. If edges are considered by decreasing weight this is equivalent
to using Greedy. Another option, which was suggested in [8], is to run the original
algorithm on the remaining edges again. This can either be done a fixed number of
times, or as long as there are candidate edges.

RAMA and ROMA are two randomized algorithms [8, 11] where the basic idea
is to repeatedly pick a vertex v and then to find the best augmenting path of a
fixed length centered in v. Whenever such a path is found it is used to augment the
current matching. The algorithms differs in that RAMA chooses the vertex v from
a uniform distribution while ROMA iterates multiple times through all vertices in
a random order. It is suggested to restrict any augmenting path to at most two
unmatched edges.

Experiments performed in [8] showed that ROMA is most suitable as an algorithm
for improving on a given matching. In combination with GPA, the results were
particularly good. The number of iterations through all vertices was at most eight
giving an overall time complexity of O(m+n).

We note that a recent algorithm for weighted matching gives a (1 − ε)
approximation in O(mε−1 log ε−1) time [12]. Although the execution time is linear
for fixed ε, no experimental results have been presented. We also note that the
algorithm appears to be somewhat non-trivial, thus its practical impact is not yet
clear.

3 New Algorithms
In the following we describe two ideas for constructing new deterministic algorithms
for efficiently computing heavy matchings. The first is to use merging repeatedly on
matchings computed by different algorithms, while the second idea is to use more
advanced algorithms to compute larger and heavier overlay graphs, on which we can
still compute an optimal matching in linear time using dynamic programming. We
first present how merging can be used.

Repeated Merging
The most expensive part of algorithms such as Greedy and GPA is the sorting of
the edge list taking O(m logn) time in the general case. Once this has been done,
the remainder of the algorithm traverses the edge list only once in linear time. Thus
the marginal cost for computing the matching is low once the sorting has been done.
Note that this is true even if a predefined subset of the edges is to be excluded from
consideration in the new matching.

We now consider how this observation can be used together with the merging
operation. In [9] a variant of Greedy was used to compute the first matching.

This algorithm is then repeated a second time, but now excluding any edges that
were included in the first matching. Finally, the two non-overlapping matchings
are merged using dynamic programming. We can view this process as if we are
augmenting the first matching M1 with a second matching M2 computed on the
edges of G′ = (V,E \M1,ω). We denote this operation as M1�M2. It is clear that
(M1�M2) = (M2�M1) is not true in general.

If two matchings computed with different algorithms are to be merged, then it
might not be necessary to require that the matchings are non-overlapping. This
could be advantageous if the algorithms tend to behave differently; the resulting
matching will in any case be at least as heavy as both stand alone algorithms. We
denote the merging operation of two independent matchings M1 and M2 as M1⊕M2.
As the outcome of M1⊕M2 is an optimal matching on the edges of M1 and M2 it
follows that (M1⊕M2) = (M2⊕M1) and that (M1⊕M1) =M1.

The merge operation can be applied iteratively, thus letting the resulting matching
be the input in a new merge step. This is particularly convenient if new matchings
can be computed efficiently once the edge list is sorted. In this way it is possible to
specify the computation of the final matching as a fully parenthesized expression using
the basic matchings as literals and � and ⊕ as binary operators. For this purpose
one could define that any edge used in the final matching of the left expression when
using the � operator cannot be used in any matching in the right expression. To
simplify things we will always use a single basic matching as the right expression in
this case. An example could be ((M1⊕M2)�M3). Here M1 and M2 are computed
independently and merged before M3 is computed while excluding any edge used in
M1⊕M2.

To analyze the overall running time of such a scheme assume that the edges
are sorted initially and that the algorithm uses k unique basic matchings, where
the time to compute the ith matching is f(i). Then the overall running time is
O(m logn+ (k− 1)m+ Σk

i=1f(i)) where the second term is due to the dynamic
programming when combining two matchings. Now if f(i) =O(m) as is the case for
algorithms such as Greedy, GPA, and PGA’, then this reduces to O(m logn+km)
and if k is also a constant, this reduces further to O(m logn).

In Section 4 we investigate how one can combine algorithms to obtain heavy
matchings efficiently.

New Tree Algorithms
We next consider how one can compute extended overlay structures where it is still
possible to compute an optimal matching in linear time using dynamic programming.
To do so we start by considering trees. Using trees as an intermediate graph structure
was first discussed in [10] but this only considered a local heuristic to build the trees.
As we want to compute an overlay graph of maximum weight we instead compute
a maximum weight spanning forest. Once this spanning forest has been computed
one can compute the optimal matching on each tree component in linear time using
dynamic programming. We label this algorithm as the Global Tree Algorithm (GTA).
Using Kruskal’s algorithm with a fast union-find data structure, GTA has time
complexity O(n+m ·α(m)) where α is the inverse Ackermann function.

We next show how GTA can be extended by including more edges in the
intermediate graph while still maintaining the linear running time of the dynamic
programming step. We do this in two steps. First, we allow for cycles in GTA as

2

2
12

1

2

1

2
1 2

1

1

(a) Intermediate graph and matching
generated by GPA

2

2
12

1

2

1

2
1 2

1

1

(b) Intermediate graph and matching
generated by GTA

Figure 1: GPA can perform better than GTA. The intermediate graph is given by
thin red edges () while the matching is given by the thick red edges ().

well. Thus, when an edge changes a path into an even length cycle, this edge is
added into the intermediate graph. Once a cycle has been created it is not inspected
further. Clearly this does not change the time complexity of the ensuing dynamic
programming. The second extension, GTA∗, also allows an even cycle to be included
into the tree as a leaf. If a cycle has already been built, an edge can be added to the
intermediate graph if it connects this cycle with a tree. The cycle then becomes a leaf
in the tree. After this, the leaf is again not inspected any further. We note that this
algorithm does not handle all possible cases of creating maximal greedy intermediate
graphs. For example, it is possible to create a cycle as a leaf by connecting two
suitable arms of the same tree. But this is hard to check in constant time. Therefore,
this and other similar cases are ignored.

To see that the dynamic programming can still be done in linear time consider a
cycle C = v0,v1, . . . ,vk,v0 connected to a tree through the vertex v0. We then need
to compute two values for C. First, the regular optimal matching for C. If this
does not leave v0 unmatched then we need to compute the best matching where
v0 is unmatched. This is achieved by computing the best matching on the path
v1,v2, . . . ,vk. In this way when we start the dynamic programming on the tree, v
can be treated as a regular internal node where we have two values, the optimal
value when v is not matched with any of its descendants and the best value when it
is allowed to match with a descendant.

Even if the intermediate graph in GTA is always greater than in GPA, the
resulting matching prior post-processing may not always be greater. Figure 1
illustrates this. A resort is to split GTA∗ into two phases. In the first phase, only a
maximal degree of two is allowed in the overlay graph and the restriction to even
cycles is kept. Thereby, we get the exact same structure as from GPA. In the second
phase the restriction of degree two is dropped, the paths are extended to trees, and
the cycles can again be integrated into the trees as leaves. This guarantees that the
generated matching is always at least as heavy as the matching resulting from GPA.
We label this approach as GTA2∗.

As to the approximation factor of these algorithms we note that the example
in Figure 1 can easily be modified to show that GTA gives an arbitrarily low
approximation factor. To do this we first increase the weight of each edge on the
perimeter to 2− ε. This will not influence the final matchings, but the weight of the
solution given by GPA is now 6−2ε while GTA still gives a solution of weight 2.

This result can be generalized by replacing an edge (x,y) on the perimeter with a
new vertex z and two new edges (x,z) and (z,y) each of weight 2− ε. We also add a
new edge from the center vertex to z of weight 2. For this instance the weight of
the solution given by GTA will remain fixed at 2, while the weight of the optimal
solution will be proportional to the number of new edges inserted. This result also
applies to GTA∗.

Since GTA2∗ gives a solution of weight no less than that given by GPA, it is
clear that GTA2∗ does have an approximation factor of 0.5. Finally we note that
the matching resulting from a merge operation is always of weight at least as large
as the maximum of the two initial matchings. Thus any approximation guarantee
that applies to any of the initial matchings also applies to the final matching.

4 Experiments
In the following we describe experiments performed to test the algorithms and to
explore the possibilities of combinations of different algorithms in terms of running
time and quality of the matchings.

The tests were run on a GNU Linux machine with 128 GB memory using one
2.00 GHz Intel Xeon E7-4850 processor. All algorithms were implemented in C and
compiled with gcc using the -O3 flag. Arrays are used as the basic data structure.
The sorting is performed by the default qsort routine in C.

Different data sets are used as test graphs. As real world instances, we use
matrices from the Florida Sparse Matrix Collection [13]. We consider two sets, one
with 121 smaller matrices, also used in [9, 14], and one set of larger matrices, similar
to [9]. We label these as FLO-S and FLO-L, respectively. Additionally, we have
data sets for random graphs (RND), random geometric graphs (GEO), complete
random graphs (COMP), and complete geometric random graphs (GEO-C). Also,
we consider graphs generated by the RMAT algorithm [15] (RMAT). All these data
sets are similar to the ones used in [9].

Throughout the experiments the differences between the quality of the solutions
is in most cases small. Still, as described in [8], the relative difference between a
particular solution and the optimal solution, known as the gap to optimality, can still
vary considerably between the algorithms. In [8] it was shown that GPA+ROMA
gave a gap to optimality that was in many cases more than 50% lower than that of
only using GPA.

It is far from trivial to implement an optimal weighted matching algorithm. The
only publicly available algorithm for this problem that we were able to to find was
the one in the LEMON package [16]. But as our own solutions in several cases were
better than those given by LEMON, we instead report performance relative to GPA.
We note that it is straightforward to check if a given matching is correct or not, thus
we are confident that our own solutions are legal matchings.

We first compare the performance of five different basic algorithms, namely
Greedy, GPA, GTA, GTA∗, and GTA2∗. Except for Greedy, all algorithms use
a greedy post processing. Figures 2a and 2b show the relative weight of the matchings
relative to GPA and average running times respectively. This is done separately
for each data set. Note that the time for sorting the edges is given separately in
Fig. 2b. Thus to get the total time of each algorithm one has to add in this time.
On average GTA2∗ gives the heaviest matchings for all sets of graphs among the
tested algorithms, while GTA, GTA∗, and Greedy yields worse matchings than

FLO-S
FLO-L

GEO-C
COMP

RMATRNDGEO

0.
96

0.
98

1.
00

1.
02

1.
04 Greedy GTA

GTA∗ GTA2∗

GPA

(a) Relative weight of the matching with
respect to GPA (ω(M)/ω(MGP A)).

FLO-S
FLO-L

GEO-C
COMP

RMATRNDGEO

10
−

8
10

−
7

GPA Sorting

(b) Running time per edge in seconds
(logarithmic scale).

Figure 2: Comparison of the basic algorithms with regard to results of the matching
and running time per edge for different data sets.

ω(M1⊕M2)
ω(MGP A) −1 in % M2

∅ GPA GTA GTA∗ GTA2∗

M1

Greedy -0.8127 0.2452 0.3235 0.3274 0.3121
GPA 0 0.4083 0.4082 0.1041
GTA -0.7010 -0.6203 0.4460
GTA∗ -0.6346 0.4460

Table 1: Performance of M1⊕M2 compared to GPA on FLO-S

GPA or GTA2∗ for most of the graph sets. An exception is RMAT for which both
GTA and GTA∗ give better results than GPA. On both complete graph sets, all
algorithms give very similar results.

Regarding running time, sorting is the most time consuming step. Algorithms
using a tree structure are more time consuming than GPA, which only uses paths
and cycles. Greedy is, as expected, the fastest among the tested algorithms.

We next evaluate different post processing methods. In addition to Greedy, we
consider reevaluation of the remaining edges by the same algorithm either a constant
number of times or as long as there are remaining edges. This showed that the
advantage of running the same algorithm multiple times was negligible compared to
Greedy. Still, post processing should not be skipped completely and we therefore
use Greedy for post processing onwards.

We now look at how we can use the merge operation to develop more elaborate
algorithms. We start this by considering the merging of only two matchings. For
this purpose tables 1 and 2 shows the results for computing M1⊕M2 and M1�M2
respectively for all possible combinations of algorithms on the FLO-S matrices. The
results are averaged for each graph class and given relative to the weight of the
solution from GPA.

The tests on merging independent matchings show that the quality of the matching
depends on the distinction of the combined algorithms. If they are likely to generate

ω(M1�M2)
ω(MGP A) −1 in % M2 for G′ = (V,E \M1,ω)

∅ Greedy GPA GTA GTA∗ GTA2∗

M1

Greedy -0.8127 -0.1726 -0.0035 -0.0204 -0.0198 0.0427
GPA 0 0.0020 0.2351 0.2753 0.2762 0.2707
GTA -0.7010 0.0727 0.1224 -0.3257 -0.2932 0.1541
GTA∗ -0.6346 0.0914 0.1388 -0.2752 -0.2654 0.1710
GTA2∗ 0.0963 0.1050 0.2906 0.3296 0.3298 0.3119

Table 2: Performance of M1�M2 compared to GPA on FLO-S.

very similar matchings, e. g. GPA and GTA2∗, or GTA and GTA∗, the combination
gives only a small improvement. On the other hand, if the concept of the algorithms
is more different, for example Greedy and GTA, then merging gives a larger
improvement. When it comes to computing an augmenting matching, the picture is
less clear, but on average the improvement of augmenting matchings computed by
GTA2∗ are slightly heavier. On the other hand, a run of GTA2∗ take 2–5 times the
running time of GPA.

When exploring more involved combinations of algorithms, we have to look at
combinations using more than two executions of a matching algorithm. But even if
we restrict ourselves to at most three executions, the number of possibilities gets so
large that it is hardly feasible to test every combination. Thus we base our algorithms
on the observations made for the basic combinations.

Our intention is then to build a reasonable combination which includes
independent matchings of Greedy, and one of GTA or GTA∗, and one of GPA
or GTA2∗. To investigate if the order we combine the algorithms influences the
final result we computed ((M1⊕M2)⊕M3) and (M1⊕ (M2⊕M3)) for every way of
picking one algorithm from each of M1 = {Greedy}, M2 = {GPA,GTA2∗}, and
M3 = {GTA, GTA∗}. The results ranged from 0.5201% up to 0.5585% improvement
over GPA. Thus all combinations were better than the best solution when using
only two matchings. Still, the differences in quality for different combination orders
and for different algorithms was small. Among the possible choices the use of GTA2∗

over GPA gave the most significant improvement.
We next consider how to build a combination of independent and augmenting

matchings such that we get the best matching but also maintain a reasonable running
time of the total algorithm. As independent matchings we use Greedy, GTA2∗, and
GTA∗ as the combination of these performed well. Again, by adding augmenting
matchings the number of possible combinations grows fast. Therefore, we use only
augmenting matchings generated by GTA2∗ and consider two basic possibilities:
First, to compute and apply one augmenting matching after the three independent
matchings are combined, while the second possibility is to compute and apply an
augmenting matching for each independent matching.

When not applying any augmentations, the average relative performance compared
to GPA on FLO-S graphs was 0.5585% higher, this increased to 0.6994% when
applying all four augmentations. However, as we must balance the execution time
with the obtained quality, we chose to only use augmentation for each of the initial
matchings giving a relative improvement of 0.6838% compared to GPA. Thus the
final algorithm, labeled G3, can be described as follows:

(MGreedy�MGTA2∗)⊕ ((MGTA∗�MGTA2∗)⊕ (MGTA2∗�MGTA2∗))

FLO-S
FLO-L

GEO-C
COMP

RMATRNDGEO

1.
00

1.
02

1.
04

1.
06

1.
08

G3

GPA+ROMA
GPA

(a) Relative weight of the matching with
respect to GPA (ω(M)/ω(MGP A)).

FLO-S
FLO-L

GEO-C
COMP

RMATRNDGEO

10
−

8
10

−
7

10
−

6

GPA Sorting

(b) Running time per edge in seconds
(logarithmic scale).

Figure 3: Comparison of G3 to GPA+ROMA with regard to results of the matching
and running time per edge for different data sets.

As discussed in Section 3 it is clear that the asymptotic running time of G3 is
O(m logn) due to the sorting of the edge list.

We next compare G3 with the combined algorithm of GPA+ROMA. Similar
to [8] the post processing of GPA is done by two runs of GPA on the remaining
edges. Figures 3a and 3b show the average quality of the matching and running time
respectively for each graph class.

The results show that in terms of quality the two algorithms are very similar,
although GPA+ROMA is on average the best. G3 gives an improvement over GPA
of up to 6.5% with an average of 2.1%. The corresponding numbers for GPA+ROMA
are 7.3% and 2.3%. When excluding the time spent on sorting, the running time
of G3 is between 8 and 15 times higher than that of GPA with an average of 12.3.
The running time of GPA+ROMA is between 8 and 34 times higher than GPA with
an average of 17.5. On average GPA+ROMA uses 42% more time than G3. The
relative low time for GPA+ROMA on the complete graphs is because ROMA will
stop as soon as it cannot improve the matching any further.

5 Conclusion
We have presented a framework for constructing fast matching approximation
algorithms and heuristics. Through careful experiments we designed our final
algorithm G3 which we showed to run faster than the best randomized approximation
algorithm while giving solutions of comparable quality.

In [9] it was shown how Greedy and the merge operation could be parallelized.
Thus a natural question is to ask if the same is possible for GPA or any of the tree
algorithms. It would also be of interest to determine if it is possible to improve the
approximation factor beyond 1

2 by using the merge operation. We suspect that this
is not the case.

References
[1] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel community

detection for massive graphs,” in Graph Partitioning and Graph Clustering,
2012, pp. 207–222.

[2] Ü. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar, “Multithreaded clustering
for multi-level hypergraph partitioning,” in IPDPS, 2012, pp. 848–859.

[3] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high quality
graph partitioner,” in IPDPS, 2010, pp. 1–12.

[4] A. M. Khan, D. F. Gleich, A. Pothen, and M. Halappanavar, “A multithreaded
algorithm for network alignment via approximate matching,” in SC, 2012, p. 64.

[5] H. N. Gabow, “Data structures for weighted matching and nearest common
ancestors with linking,” in SODA’90. SIAM, 1990, pp. 434–443.

[6] D. E. Drake and S. Hougardy, “A simple approximation algorithm for the
weighted matching problem,” Inf. Proc. Let., vol. 85, pp. 211–213, 2003.

[7] ——, “Linear time local improvements for weighted matchings in graphs,” in
WEA’03, vol. 2647. LNCS, Springer, 2003, pp. 107–119.

[8] J. Maue and P. Sanders, “Engineering algorithms for approximate weighted
matching,” in WEA’07. LNCS, Springer, 2007, pp. 242–255.

[9] F. Manne and M. Halappanavar, “New effective multithreaded matching
algorithms,” To appear in the proceedings of IPDPS 2014, available at
http://www.ii.uib.no/~fredrikm/ipdps2014.pdf, 2014.

[10] M. Birn, “Engineering Fast Parallel Matching Algorithms,” diploma thesis,
Karlsruhe Institute of Technology, 2012.

[11] S. Pettie and P. Sanders, “A simpler linear time 2/3− ε approximation for
maximum weight matching,” Inf. Process. Lett., vol. 91, no. 6, pp. 271–276,
2004.

[12] R. Duan and S. Pettie, “Linear-time approximation for maximum weight
matching,” J. ACM, vol. 61, no. 1, pp. 1:1–1:23, Jan. 2014.

[13] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, Dec. 2011. [Online].
Available: http://doi.acm.org/10.1145/2049662.2049663

[14] M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava, “Efficient parallel
and external matching,” in EuroPar’13, vol. 8097. LNCS, Springer, 2013, pp.
659–670.

[15] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for
graph mining,” Proc. SIAM Intl. Conf. on Data Mining, 2004.

[16] “Lemon graph library,” http://lemon.cs.elte.hu, 2013.

