
Investigating Optimal Progress Measures for
Verification of the WebSocket Protocol

Lars M. Kristensen - Email: lmkr@hib.no

Department of Computing, Mathematics, and Physics, Bergen University College

Abstract

The sweep-line method is a state space reduction technique for
memory-efficient on-the-fly verification of concurrent systems. The
method relies on a progress measure capturing inherent progress in the
system under verification to store only fragments of the state space in
memory at a time and thereby reduce peak memory usage. The sweep-
line method has been applied to many concurrent systems, but the
optimality of progress measures in terms of the peak number of states
stored has not been investigated. Assessing the optimality of a progress
measure is important since memory in most cases is the limiting factor
in verification using state spaces. We derive lower bounds for the peak
number states and present initial experimental results on near optimal
progress measures for verification of the IETF WebSocket protocol.

1 Introduction
Most software systems today can be characterised as concurrent systems in that
their operation fundamentally relies on communication and synchronisation between
concurrently executing and independently scheduled software components. This
includes software and protocols for Internet and web-based services, multi-threaded
applications, and software for embedded- and networked control systems. It is well-
known that the design, test, debugging, and implementation of concurrent systems
can be a challenging task. Model checking [1] based on state space exploration
has emerged as a powerful paradigm for verifying the correctness of finite-state
concurrent systems and aid in the development of reliable concurrent software
systems. The principle of state space exploration (in its most basic form) is to
enumerate all reachable states of the system under verification to algorithmically
decide whether a system has certain formally stated behavioural properties or not.
The main drawback of state space exploration is the inherent state explosion problem
[7] which means that for practical verification of systems, reduction techniques
coupled with on-the-fly verification of properties need to be employed in order to
handle the size of state spaces appearing in typical systems. This has led to the
development of a wide collection of state space reduction techniques that exploit
different characteristics of the system under verification to reduce the part of the
state space that needs to be explored; reduce the amount of memory that needs to
be used when exploring the state space; or enable the use of powerful computing
infrastructures to increase the CPU and/or memory resources available.

This paper concentrate on the sweep-line state space exploration method [4]. To
make the presentation independent of any particular language used for modelling the

system under verification, we view state spaces as transition systems TS = (S,∆, s0)
consisting of a set of system states S, a transition relation ∆ ⊆ S×S, and an initial
state s0 ∈ S. State space exploration consists of exploring the set of reachable
states, i.e., the set of states that can be reached from the initial state by successively
following successor states as determined by the transition relation.

2 The Sweep-Line Method and Lower Bounds
The basic idea of the sweep-line method is to exploit a notion of progress inherent in
many systems. As examples, progress can be present in control flow, retransmission
counters, sequence numbers, and execution phases. A progress measure may be
computed from the structure of the model under verification or be provided by the
analyst. Progress is captured via a progress measure φ : S → O that maps each
system state s ∈ S into a progress value φ(s) belonging to a set of progress values O.
The progress values partition the state space in progress layers such that all states in
a given layer have the same progress value. The method explores one layer at a time
in a least-progress-first order according to a total ordering v on the set of progress
values. The sweep-line method optimistically assumes that the system always makes
progress (i.e., successors of a state have equal or larger progress values) and once a
layer has been processed, the states of this layer are deleted from memory and the
method proceeds to states in layers with a higher progress value. This means that
the peak memory usage is reduced compared to ordinary state space exploration
where all encountered states are stored in memory. If the system does make regress
(i.e., the progress measure is non-monotonic), then states at the end of regress edges
are marked as persistent and a new search is initiated from such states meaning that
some reachable states may be visited several times. A state marked as persistent
will not be deleted from memory which ensures termination [4].

The operation of the sweep-line method is specified in Alg. 1. The algorithm
starts the exploration (line 2) by marking the initial state s0 as non-persistent, and
inserting it into the set of root states R for the search (exploration) and into the
set of states H that has been encountered and is currently stored in memory. The
algorithm then initialises the priority queue of unprocessed states Q to the set of
roots and explores the states reachable from these roots (line 4). In each iteration,
states are processed in a least-progress-first order (lines 8-10) and when a progress
layer has been processed, non-persistent states in G are deleted from memory (line

Algorithm 1 The sweep-line state space exploration algorithm.

1: algorithm Sweep is
2: s0.pers := false ; R := {s0} ; H := {s0}
3: while R 6= ∅ do
4: Q := R ; R := ∅ ; explore()
5: procedure explore() is
6: while Q 6= ∅ do
7: G := ∅ ; φm := Q.minProgress()
8: while Q.minProgress() = φm do
9: s := Q.dequeue()

10: process(s)
11: H := H \ G

12: procedure process(s) is
13: for (s, s′) ∈ ∆ do
14: if s′ /∈ H then
15: s′.pers := φ(s′) @ φ(s)
16: H := H ∪ {s′}
17: if s′.pers then
18: R := R∪ {s′}
19: else
20: Q := Q∪ {s′}
21: if ¬s.pers then
22: G := G ∪ {s}

11). The processing of a state s (lines 12-22) explores all successor states of s, and
insert any new states in H and in R (if persistent) or in Q (if not persistent). Non-
persistent processed states are added to G (line 22) to ensure that they are deleted
(line 11) when the complete progress layer has been processed.

With a pure internal memory implementation of the sweep-line method, only
the states in the current layer, states in the priority queue of unprocessed states,
and states marked as persistent are stored in memory. The key observation to
derive a lower bound on the peak number of states stored in the case of monotonic
progress measures (i.e., no regress edges and hence no persistent states) is that all
states on a cycle of the state space must belong to the same layer. This implies
that all states belonging to a strongly connected component scc must be present in
memory simultaneously. Furthermore, any successor states of states in scc with a
larger progress value must be stored in the queue of unprocessed states. Using the
hybrid external-memory implementation presented in [2], states in the queue having
a larger progress value can be stored in external memory.

Theorem 1 Let SCC denote the set of strongly connected components (SCCs) for
a state space TS = (S,∆, s0), and for an SCC scc ∈ SCC, let Out(scc) = {s′ ∈
S−scc | ∃s ∈ scc : (s, s′) ∈ ∆}. Then, maxscc∈SCC |scc|+|Out(scc)| is a lower bound
for the peak number of states stored with the internal memory implementation, and
maxscc∈SCC |scc| is a lower bound for the hybrid external-memory implementation.

3 Progress Measure for the WebSocket Protocol
In earlier work [6], we conducted formal modelling of the WebSocket (WS) protocol
[3] using Coloured Petri Nets (CPNs) and CPN Tools [5]. The WS protocol has
been developed by the IETF to transform an HTTP connection into a message-
oriented bidirectional connection eliminating the HTTP request-response pattern.
As part of our work, we used full state space exploration to verify connection
establishment properties of the WS protocol. This led to the identification of
potential synchronisation errors in the closing of WS connections, and highlighted
the need for reduction techniques to verify larger configurations of the WS protocol.

IDLE

URI

OPEN

CLOSEDServerToClient In/Out

Connection

In/Out ClientToServerIn/Out

Connection

In/Out

Establish WebSocket

Connection

ClientEstablishConnectionClientEstablishConnection

Data Transfer

Client DataTransfer

Close WebSocket

Connection

ClientCloseWebSocket ConnectionClientCloseWebSocket Connection

Client DataTransfer

Figure 1: Client module of the WS CPN model.

Figure 1 shows a selected
module from the CPN model of
the WS protocol, modelling the
client-side of the WS connec-
tion establishment. From the
structure of this module, it is
evident that there is progress
present in the WS protocol
as both the client and the
server protocol entities progress
through states when going from
an IDLE state to an OPEN
state to a CLOSED state. This
motivated the application of the sweep-line method to the WS protocol.

Table 1 provides selected initial experimental results obtained using CPN Tools
for three configurations C1-C3 of the WS protocol. The results are based on a
state-based progress measure for the client and server entities as outlined above,

Config Peak-In Ω(Peak − In) Peak-Ext Ω(Peak − Ext)

C1 0.47 1.02 0.32 1.00
C2 0.56 1.01 0.38 1.00
C3 0.64 1.01 0.45 1.03

Table 1: Initial Experimental results for WS progress measures.

and additionally considering intermediate sub-states within the three main phases
shown in Fig. 1. Column Peak-In lists the peak number of states stored with a pure
internal memory implementation relative to the total number of states in the state
space, and column Ω(Peak − In) lists the peak number of states stored relative to the
lower bound. Columns Peak-Ext and Ω(Peak − Ext) give the corresponding numbers
for the external-memory implementation. Computation of the lower bounds from
Thm. 1 relies on Tarjan’s algorithm for computing SCCs. It can be seen that the
peak number of states stored ranges from 32% to 64% of the full state space, and
that the peak number of states stored is at most 3% larger than the lower bound.

4 Outlook
We have presented initial work on lower bounds for the peak number of states stored
with the sweep-line in the case of monotonic progress measures. The lower bounds
can be efficiently computed using Tarjan’s algorithm for small configurations of
a system under verification and used to experimentally assess the optimality of a
progress measure. Furthermore, we have shown how to define near optimal progress
measures for the WS protocol. Future work includes investigating bounds for the
non-monotonic case and investigate how tight our bounds are for other examples
as we may have multiple SCCs within a progress layer. Future work also includes
assessing the progress measures that have been applied for verification of e.g., the
DCCP, IOTP, and WAP protocols and possibly suggest better progress measures.

References
[1] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model Checking: Algorithmic

Verification and Debugging. Commun. ACM, 52(11):74–84, 2009.

[2] S. Evangelista and L. M. Kristensen. Combining the Sweep-Line Method with
the use of an External-memory Priority Queue. In Proc. of SPIN’12 Symp. on
Model Checking of Software, volume 7385 of LNCS, pages 43–61. Springer, 2012.

[3] I. Fette and A. Melnikov. The WebSocket Protocol. tools.ietf.org/html/rfc6455.

[4] K. Jensen, L.M. Kristensen, and T. Mailund. The Sweep-line State Space
Exploration Method. Theoretical Computer Science, 429:169–179, 2012.

[5] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools
for Modelling and Validation of Concurrent Systems. STTT, 9(3-4), 2007.

[6] K. Simonsen and L.M. Kristensen. Towards a CPN-based Modelling Approach
for Reconciling Verification and Implementation of Protocol Models. In Proc. of
MOMPES’12, volume 7706 of LNCS, pages 106–125. Springer, 2013.

[7] A. Valmari. The State Explosion Problem. volume 1491 of LNCS, pages 429–528,
1998.

