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Abstract

This paper is investigating if it is possible to predict source code quality
based on static analysis and machine learning. The proposed approach
includes a plugin in Eclipse, uses a combination of peer review/human
rating, static code analysis, and classification methods. As training data,
public data and student hand-ins in programming are used. Based on
this training data, new and uninspected source code can be accurately
classified as “well written” or “badly written”. This is a step towards
feedback in an interactive environment without peer assessment.

1 Introduction
Analysis of source code has been a topic of interest for many years. Both static
and dynamic solutions are developed [1]. Previous relevant research mainly focuses
on fault-prediction in the code, but there is a lack of research on identifying both
well written and badly written code. It is not a trivial task to detect the quality of
the code, since it depends on both functional requirements, structural requirements,
and complexity.

This paper introduces an approach that use static code analysis and classification
methods. For static code analysis, 15-20 rules are used, and the classifier is
supposed to classify well written or badly written source code based on training data
provided by peer reviews, public datasets and student hand-ins in programming.
The proposed approach is based on and extends the implemented proof of concept
plugin by Barstad et.al [2] which has the possibility for several users to add files
from different projects for review, and perform peer review on selected files.

Motivation
A comprehensive study of 21 papers in the field of automated code analysis indicates
that this research direction is very promising but far from trivial [1], and that there
exist several plugins aimed on providing a way of rating source code [3, 4]. For
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example, there exists an Eclipse-based software fault prediction tool using the näıve
Bayes algorithm [5]. While previous research mainly focuses on fault-prediction, this
paper propose an approach with static code analysis as well as machine learning
based classification used to automatically identify both well written and badly
written code.

Problem Definition
We are investigating if it is possible to identify well written and badly written
source code by using peer review/human rating, static code analysis and review of
the source code by classification. We focus on finding badly written code because
detecting bad student assignments is more important.

The rest of the paper is organized as follows : Section 2 describes related research
in the area, section 3 present the training data used for the classifications. Section
4 describes the approach, while the results are shown in section 5. Our conclusion
are given in section 6, while future work and acknowledgement are given in section
7 and 8.

2 State of the Art
Code quality is essential for good software development, and the quality of the source
code depends on several aspects. One of them is the functional quality which reflects
how well it fulfils its functional requirement and specifications. Another aspect is
the structural quality which refers to non-functional requirements like robustness
and maintainability, this can be evaluated through analysis of the inner structure of
the code. Code review, static code analysis, metrics and environment are all relevant
to this paper.

One of the important issues about code quality is how easy it is for humans
to read and understand the code, and an important measurement for this is the
complexity measurement. A measurement to calculate the cyclomatic complexity
of a program was developed by McCabe [6] in 1976. This measurement uses the
control flow graph of the program to compute the number of linearly independent
paths through the source code. Another complexity measurement is defined by
Healsted [7]. This work was based on studying the complexities of both programming
languages and written languages. A code smell is an indicator that a program
possibly contains a problem. Code smells are usually not bugs since they are
technically correct and do not prevent the program from functioning. Instead
they indicate weakness in the design or an increasing risk of failures in the future.
In the research performed by Mäntylä et al. [8], a taxonomy of bad smells in
code was created. They categorized similar bad smells and performed an empirical
study which provided an initial correlation between the smells. Another study in
this field was performed by Yamashita and Counsell [9], this research investigated
the potential of code smells to reflect system-level indicators of maintainability
evaluations.

Inspection of source code can be performed with either manual or automated
approaches. An introduction to Code Review and Static code analysis is presented
by Barstad et al. [2]. Feature location is the process of identifying locations in the
source code that implements a functional requirement of a software system. B. Dit
et al. [10] presents a survey of feature location techniques. In this paper 89 articles



were reviewed and classified.

Code Review and Static Code Analysis
Static code analysis gives an opportunity to check the quality of source code without
executing the program. There exists several ways of analyzing code without, or
nearly without, human participation. Among them is information retrieval based
tools (IR) that complement traditional static and dynamic analysis by exploiting
the natural language found within a program’s text. D. Binkley [11] surveys current
(2007) work on source code analysis. In addition, Wong and Gokhale[12] proposed a
static and dynamic distance metric to determine the distance between features of a
software system. In their work Fehnker et al. [13] looked at common software bugs
and potential false alarms.

Software Metrics and Public Datasets
Research has been performed based on the metrics defined by available public data
sets1. Research performed by Menzies et al. [14] uses these data sets and has shown
that it is possible to use static code attributes to automatically detect predictors for
software quality. An Eclipse plugin for detection of design patterns through static
and dynamic analysis was developed by De Lucia et al. [15].

Classification Methods
In machine learning, classification is the task of identifying which class a new and
unlabelled item belongs to, based on previous knowledge. Methods used for text
classification and static analysis including Bayesian classification [5, 16] , n-gram
[17] , Support Vector Machine (SVM) [18, 19] and Decision Tree [20].

Development Environment
Eclipse is the main development environment (IDE) for many Java developers.
It is a multi-language software IDE that has an opportunity for customizing the
environment by using plugins [21]. A plugin is a component that allows the
developer to customize and extend the IDE. Extensions are supposed to simplify
the development process and give additional possibilities for the developer. By
extracting information about design patterns from software systems, insight on the
structure of the software and its internal characteristics can be provided. A short
paper about the Automatic and Collaborative Code Review Plugin was published [2]
2 that shows the possibility to implement a plugin which facilitates identification of
well written and badly written code. The paper proposed methods and algorithms
on how to use static analysis and classification to automatically identify well written
and badly written code.

Since software development is a collaborative process, there is a need for
computer-based collaborative tools. Integrating such tools into the IDE, and
enabling them with awareness of development processes and artifacts, may help
reduce context switches between tools inside and outside the IDE, and make the
connection between development and collaboration more seamless. Depending of

1http://promise.site.uottawa.ca/SERepository/datasets-page.html
2by the authors of this paper



different purposes, collaborative tools may have somehow different implementations
and capabilities [4, 22, 23].

3 Data
To classify source code with an unknown class, there is a need of training data
labelled with the appropriate labels: “well written” code and “badly written” code.
To achive this, data from the following sources are collected as training data.

* PROMISE1: Available public dataset from the PROMISE workshop website
named jm1 with continuous values 3

* PROMISE2: Public dataset jm1 dataset with discrete values

* STUDENT: Student hand-ins in basic programming course at University of
Agder

Public Datasets
Both PROMISE1 and PROMISE2 datasets are labeled true/false indicating if the
source code has a probability of being faulty or not, and it has 21 featur values
that can be calculated by a textual analysis of the source code. The cyclomatic
complexity and the number of operators and operands in the code are examples of
features. From the 21 features, 15 features were selected for further study. The
reason for selecting these features was that they can be calculated using JHawk 4 or
easily be implemented in a real live application. A list of the selected features are
shown in Table 1. A limitation of using the jm1 dataset from promise as training
data, is that in this dataset each method are labelled true/false according to if they
are fault-prone or not. It might not be completely correct to assume that a fault-
prone method is badly written, or that a not fault-prone method is well written,
but in this stage of the project we have chosen to use the jm1 promise dataset as
training data for the classification because there is a lack of human resources to
perform peer reviews.

The PROMISE1 dataset were imported into the MySql database, and the
continuous feature values were converted from continuous values into a discrete range
by analysing a plotted graph and calculating the cumulative distribution for each
feature. The reason for doing this was to investigate if the process of discretizing the
values gave better results when classifying the dataset. An example of the conversion
for the total operators and operands feature(C2) is shown in Table 2, the output
from this process is the PROMISE2 dataset.

Several combinations of the features were selected for classification. A quantile-
quantile(QQ) plot is a graphical technique used to determine if two datasets has a
common distribution. By looking at the QQ plots of the features, the ones that look
most discriminating was selected. Examples of the graphs are shown in Figure 1.

From the figure we can see that feature C4 are more discriminating than feature
C9, and that feature C4 and C5 have a common distribution, while feature C4 and
C6 does not have a common distribution. After inspecting all features, a feature
set including C1,C4,C6,C10,C11,C12,C13,C14 and C14 was selected as one of the
combinations.

3http://promise.site.uottawa.ca/SERepository/datasets-page.html
4http://www.virtualmachinery.com/jhawkprod.html



Feature Description
C1 McCabe Cyclomatic complexity
C2 Halstead total operators + operands
C3 Halstead Volume
C4 Halstead program length
C5 Halstead difficulty
C6 Halstead intelligence
C7 Halstead effort
C8 Halstead bug
C9 Halstead time estimator
C10 Halstead line cont
C11 Halstead lines of comments
C12 Halstead lines of blank lines
C13 Unique operators and operands
C14 Total operators
C15 Total operands

Table 1: Selected features

From To Discretized Cumulative
Value Value Value Percentage

0 6.99 A 5.04 %
7 9.99 B 10.45 %

10 13.99 C 14.67 %
14 18.99 D 20.32 %
19 24.99 E 25.65 %
25 30.99 F 30.45 %
31 36.99 G 35.04 %
37 43.99 H 40.15 %
44 59.99 I 50.27 %
60 80.99 J 60.04 %
81 113.99 K 70.19 %

114 165.99 L 80.11 %
166 289.99 M 90.06 %
290 ∞ N 100.00 %

Table 2: Converting data feature C2

Student Hand-ins in Programming
In addition to the public data set, student hand-ins in basic programming were
collected for the year 2013-2014 together with the teachers solution to each hand-
in(STUDENT dataset). An example of the statical analysis generated for some of
the hand-ins are shown in Figure 2. As shown in the figure, feature C12, “number
of blank lines”, are not available in JHawk, so this feature has been implemented
manually. A metric is a value generated by the static analysis for each feature, for
example the count of lines in a given method. An example of the metrics and the
classification of the methods are shown in Table 3



Figure 1: Example of feature graphs and QQ plots

Figure 2: Static Analysis



4 Approach
To further investigate the possibility of code analysis, we base ourselves on the proof
of concept implementation from previous work [2], together with an implementation
of the selected classification methods in Python. JHawk is used to generate the static
analysis for the source code, and some metrics are generated by the plugin. The
plugin offers peer code review, and the implementation in Python the automated
classification of source code quality. Figure 3 shows an overview of the architecture
of the approach.

Figure 3: Architectural overview

Tools
The approach uses a MySql database for storing the collected training data and
the results from static analysis. Some of the static analysis is implemented by the
plugin, the rest is performed using JHawk. The classification is implemented in
Python, the selected methods are k nearest neighbour (KNN), näıve Bayes (NB)
and decision tree (DTree).

Static Analysis
The plugin extracts features based on static analysis. Static analysis gives us an
opportunity to analyse the source code without executing the program. The source
code to be analysed is given as an input to JHawk by command line, and a text file
containing the static metrics is generated. These metrics are stored in the MySql
database together with a textual representation of the source code to be analysed.
The classification of the methods as well written or badly written are based on



this metrics together with some metrics generated by the plugin. An figure of the
generated metrics are shown in Figure 2. Before the metrics are stored in the
database, the metrics are converted to discrete values as described in Table 1.

Classification
Classification is the task of deciding which category a new instance belongs to based
on the available training data. By using the generated metrics from the static
analysis, and the available training data, it is possible to classify the methods; this
process is shown in Figure 4.

Figure 4: Classification process

An example of the classification of the source code class methods (see Figure 2)
are shown in Table 3.



Prediction C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Method 1 Well written 1 11 316 0.03 36 0.06 9 30 17.6 3 0
Method 2 Badly written 2 8 199 0.11 4 1.19 5 87 11.1 1 1
Method 3 Well written 7 42 1021 0.03 88 0.05 18 40 56.7 0 11
Method 4 Well written 1 10 298 0.03 78 0.03 6 0 16.6 4 0
Method 5 Well written 1 8 230 0.04 70 0.03 4 24 12.8 6 0

Table 3: Example of classification of student hand-ins process

5 Results and Discussion
The public dataset was classified with k nearest neighbour (KNN), näıve Bayes(NB)
and decision tree(DTree), the results of this classifications are shown in Table 45.

Dataset Features Method Badly written Well written Total
Pre Rec Pre Rec

PROMISE1 21 KNN 0.228 0.356 0.906 0.837 77.95 %
DTree 0.364 0.366 0.856 0.855 76.40 %
NB 0.084 0.402 0.971 0.822 80.61 %

PROMISE1 15 KNN 0.227 0.348 0.903 0.836 77.68 %
DTree 0.374 0.362 0.849 0.856 76.06 %
NB 0.087 0.415 0.972 0.823 80.72 %

PROMISE1 9 KNN 0.287 0.423 0.910 0.848 79.43 %
DTree 0.339 0.336 0.847 0.848 75.24 %
NB 0.323 0.361 0.869 0.849 76.76 %

PROMISE2 9 KNN 0.274 0.409 0.909 0.846 79.11 %
DTree 0.364 0.350 0.845 0.853 75.54 %
NB 0.506 0.323 0.757 0.870 71.02 %

PROMISE2 15 KNN 0.292 0.419 0.907 0.848 79.28 %
DTree 0.361 0.355 0.850 0.853 75.90 %
NB 0.523 0.315 0.739 0.871 69.90 %

Table 4: Classification by K Nearest Neighbour(KNN), näıve Bayes (NB) and
decision tree (DTree), CrossValidation = 10, Pre = Precision, Rec = Recall

As a baseline for the experiments the 21 features from PROMISE1 was used for
classifications. At a first glance at the results in Table 4, it seems like NB performed
best (80.72 %) on the original dataset with continuous values using 15 features, but
when inspecting precision and recall for each class this might not be true. NB was
able to classify 8.7 % of the badly written methods correctly and 97.2 % of the
well written methods. By using the PROMISE2 dataset the precision for the badly
written methods were improved at the expense of the precision for the well written
methods. When optimizing the classification to find the badly written methods, NB
was able to classify 52.3 %) of the badly written methods correctly and 73.9 % of
the well written methods by using the PROMISE2 dataset and 15 features.

Including student hand-ins in programming as training data might give even
better results. When automatically classifying these methods as well written/badly
written by the first classification, we can manually inspect the source code with peer

5The classifications are also performed with CV = 25 and 50, the differences are small



review and use this data as training data for the next classification. An example of
classifying student handins are shown in Table 3.

6 Conclusion
In this paper we have proposed an approach for classification of source code quality
based on static metrics and training data from public datasets and student hand-ins
in programming. Several Classification methods are used including näıve Bayes,
knn and decision tree. When optimizing for finding the badly written methods,
NB outperforms the other classifiers. The classifiers are better able to identify well
written code than badly written code, a reason for this might be that the number
of well written methods are larger than the number of badly written methods in
the training data. When building up better training data, this results may improve.
From this result, we conclude that it is possible to accurately identify the quality of
the source code by using static analysis and classification.

7 Future work
By the time of writing, the approach handles only the promise datasets as training
data, and use KNN, NB and DTree as classification methods. We have concrete
plans to classify the STUDENT dataset by the quality of the code and to give
immediate feedback to the students when they deliver their hand-in. We plan to
use Support Vector Machine (SVM) to classify the source code based on available
training data. The training data will be improved to get better results for both well
written and badly written methods.
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