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Abstract. Nowadays graph data have become absolutely ubiquitous in
various applications starting from social/road networks to bio-medical
data etc. Given such graph data, a reachability query asks if there exists
a path from a source vertex to a target vertex in the graph. Due to its
immense implications in both theory and applied domains, this query
and many of its variants have been extensively studied in the literature.
One such variant investigates the reachability between two vertices in an
edge-labeled graph while constraining the label set simultaneously. This
problem has recently been addressed by Valstar et al. [SIGMOD’17] who
proposed an approach called the landmark indexing (LI) to support faster
label-constrained reachability (LCR) queries. In this work, we introduce
a simple, practical and space-efficient solution for answering LCR queries
even faster. The experimental evaluation shows significant time and space
efficiency benefits of our proposed solution over the LI approach for this
problem in both real-world and synthetic graphs.
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1 Introduction

As graph databases and real-world network graphs continue to increase in pop-
ularity and expand in size, the ability to efficiently query information out of
these graphs will also increase in importance. One such family of queries which
garnered notable amount of research is the reachability query [10, 12, 23, 25, 26].
Given any two nodes v1, v2 ∈ V in a graph G = (V,E), the reachability query
answers if there exists a path between the queried nodes. As outlined in [28],
these are used across a wide range of use cases including data mining [12], web
site analysis [8], and biological network analysis [7] etc. For example in bioin-
formatics, vertices may be either molecules, reactions, or interactions in living
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cells and edges will represent how these various biological elements interact with
each other. In this context, reachablity queries help biologists determine which
genes are influenced, either directly or indirectly, by a given molecule.
Label-constrained reachability (LCR) [11, 13, 27] queries represent a subset of
reachability queries that have been attracting much recent interest. This con-
cerns with finding a path between two vertices in an edge-labeled graph, where
the labels on the edges belonging to the path should come from a given query
subset of the labels. For example, in a typical biological database, we might
only be interested in the interaction pathways between different proteins and
not so much in citation relationships holding between protein vertices and ver-
tices denoting scientific publications. Another important application lies in the
appearance of LCR queries as an important segment of the language of reg-
ular path queries [2, 4], which are actually reachability queries constrained by
regular expressions. In practical graph query languages such as SPARQL 1.11
(see http://www.w3.org/TR/sparql11-query/) and PGQL [19], LCR (and other
related) queries have been implemented. See [24] for more applications.

It is easy to see that there exists two very naive and straightforward ap-
proaches to answering reachability queries. The first approach is to create the
transitive closure of the query graph, which can then be used to answer reach-
ability queries in O(1) time. The other approach is to perform a breadth-first
search (BFS) over the graph at query time. Both these approaches on their own
are not feasible on real-world graphs – the first approach uses too much space,
while the second approach is too slow. Thus, any practical reachability query
solution should aim to strike some sort of trade-off between these two extremes.

In this paper, we study a variant of the standard reachability query, called
the labeled-constrained reachability which is formally defined as follows. Given
a graph G = (V,E,L) where each edge in E is labeled with a label from the
label set L, we want to preprocess the graph to build an index such that given
an LCR query (s, t, L), we need to determine if there exists a path P from s to
t such that all the edge labels on the path P belong to the set L ⊆ L. As LCR
query is fundamental to many practically motivated applications, obtaining an
efficient solution for this problem is of paramount importance in literature of
modern graph analytics. Starting from the work of Jin et al. [11], this problem
has already been extensively studied by many researchers [6,30], and the state-of-
the-art result is due to Valstar et al. [24] which is what we significantly improve
in this work. More specifically, our main results are following.

Main contribution: We propose three different graph indexing schemes, each
one successively improving the previous one and finally culminating with the ASL
(details are deferred till Section 3) method which improves the current state-of-
the-art landmark indexing (LI) method for LCR queries significantly; in terms
of space consumption, our ASL method performs significantly better than the
LI method while supporting the queries much faster (for both true and false

queries). This makes our method more suitable for queries on extremely large
graphs, where the memory demands of the LI method may make this approach
infeasible. The rest of the paper is organized as follows. After a brief discussion
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of related work on this problem in Section 2, we explain our three methods in
Section 3. Then, we provide our experimental results in Section 4, before finally
concluding in Section 5.

2 Related Work

Landmark indexing (LI) algorithm [24]: The landmark indexing (LI) algorithm
proposed by Valstar et al. [24] aims to provide a tradeoff for solving LCR queries.
LI works by constructing indices for a small group of vertices, referred to as
“landmarks”. Given a graph G = (V,E,L), for each landmark vertex v, an
index is stored of (w,L) ∈ V × 2L if there exists an L-path (i.e., a path in which
all the edge labels belong to the subset L) from v to w. Queries for which the
source vertex is a landmark can be answered by simply checking the index. In
general, queries are answered by performing a BFS from the source vertex, using
the indices stored to speedup the lookup at landmark vertices, and ending the
search as soon as we reach the target vertex. In this regard, the LI method can be
seen as somewhat of a compromise between time efficient and memory efficient
approaches.

Hotz et al. [9] have recently shown the efficiency of LI in real-world database
Neo4j [17]. LI, being the most recent development for the LCR queries, serves as
an excellent benchmark for our proposed algorithm. In fact, the focus of our work
is to improve some of the issues of this algorithm. More specifically, one glaring
issue with landmark indexing algorithm is its performance for non-landmark
nodes. The authors note that especially for LCR queries on the non-landmark
nodes where the answer is false, their algorithm performs no better than the
standard BFS. Given the huge indexing space taken up by the landmark nodes,
this algorithm represents a ‘worst of both worlds’ scenario for LCR queries which
return false. Also, the result of [24] and the previous ones do not scale well
to extremely large graphs required in most of today’s applications, thus, we
provide an improved time/space efficient, simple and practical solution for the
LCR problem surpassing all the previous results.
Tree-based index framework [11]: This approach works by building a full transitive
closure (TC) of the underlying graph to answer LCR queries. As storing the full
TC is costly, authors devised a tree-based index framework which contains a
spanning tree T and a partial transitive closure (PT) of the graph. PT and T
have enough information to derive the full TC. One drawback of this method is
that it is not practical for dense graphs since the size of PT increases with the
density. Subsequent work has pointed out the limitation of this approach [30],
thus, we do not use this in our experiments.
BFS Optimization [5]: In this work, the authors extend the standard top-down
BFS as follows. In the standard BFS, starting from the source vertex, all the
vertices at the same depth are visited before any vertex of the next depth. Exper-
iments showed this approach to be between 2-5 times faster than the standard
BFS on real-world social network graphs and other practical networks. BFS plays
an instrumental role both in landmark indexing, and our proposed algorithms.
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We use this optimized BFS in all of our implementations, including LI.
Standard reachability query [28]: We refer the readers to the survey of Yu and
Chang [28] where they provided detailed history of the standard reachability
query (and its many variants) along with sketching various solutions for this
problem. This concludes our brief discussion on relevant related work.

3 Proposed Methods

In this section, we propose three different indexing schemes for answering LCR
queries and analyze their worst-case space, construction time and query time
complexities. We first start with the All Label Combinations (ALC for short)
method, and describe its query algorithm, and time/space complexities in Sec-
tion 3.1. This is followed by our second method, called ALC+SCC in Section 3.2,
which is an improvement over the ALC method, by incorporating strongly con-
nected component decomposition (SCC) of directed graphs along with the ALC
method to derive the ALC+SCC method. Finally, in Section 3.3, we explain how
one can combine the ALC+SCC method with the landmark indexing (LI) scheme
to get even better results. We call this as ASL (ALC+SCC+LI) algorithm.

3.1 All Label Combinations (ALC)

Given a labeled graph G = (V,E,L), the ALC method simply constructs several
unlabeled graphs, one for each non-empty label-subset. This leads to the con-
struction of 2` − 1 unlabeled subgraphs (we use ` to denote the size of the label
set L in this paper). For example, if the set of labels for a graph is L = {a, b, c}
then the ALC algorithm first computes all possible label combinations {a}, {b},
{c}, {a, b}, {a, c}, {b, c} and {a, b, c}, creating a (sub)graph corresponding to
each subset L such that the labels of all the edges in the graph are only from L.
In the rest of the paper, we denote, by GL, the unlabeled subgraph of the given
labeled graph G which contains exactly those edges in G whose edge labels are
from L, and their incident vertices. Also, given a graph G, we use G.V and G.E
to refer to the vertex and edge sets of the graph G. Now, given a query (s, t, L),
we perform a BFS on the precomputed subgraph GL of G to establish whether
there exists a path from s to t. It is easy to see the correctness of this algorithm.

Time and Space Analysis. For constructing 2` − 1 unlabeled subgraphs, we
spend overall O(2`(n+m)) time during preprocessing. The query time is at most
linear in the size of the subgraph GL (hence O(n+m)). The overall space usage
of the algorithm is the sum of the sizes of all graphs GL, for every L ⊆ L, which
is O(2`(n+m) log n) bits. As it will be clear later (in Section 4) that for all data
sets, the ALC method performs worse that the LI method for answering queries,
but its main novelty lies in the fact that it reduces the LCR problem from a
labeled graph reachability problem to an unlabeled graph reachability problem.
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Fig. 1: (a) An example graph with 5 vertices, 7 edges and labels L = {a, b, c}.
(b) All the subgraphs based on all possible non-empty label combinations of L.

3.2 ALC+SCC Method

This method tries to address one of the drawbacks of ALC method, which is it’s
high query time. As mentioned earlier, given an LCR query (s, t, L), ALC right
away jumps to the graph GL, and by doing this, we prune many unnecessary
edges (whose labels are not from L) to look at from the point of view of answering
this query. But this advantage soon gets waned as we are essentially performing
a BFS to scan the whole of GL. Thus, if we can perform this second step faster,
this will result in an overall faster algorithm. And, the way we achieve this is
by incorporating the strongly connected component decomposition of each of
the individual graphs produced by the ALC method. We refer to the resulting
algorithm as ALC+SCC method. Also, if the graph has several vertices that
belong to these SCCs, then the overall space usage improves as a result. We now
describe the algorithm and analyze its time, space and query complexities.
Strongly connected components: A directed graph G is said to be strongly
connected if for every pair of vertices u and v in V , both u and v are reachable
from each other. A subgraph G′ is a strongly connected component (SCC) of G
if G′ is maximal and is strongly connected. If G is not strongly connected, it
is possible to decompose G into its SCCs. It is also possible to test the strong
connectivity of G, and to find its SCCs, in O(|V | + |E|) time [20]. For undi-
rected graphs, we use connected component decomposition instead of the SCC
decomposition, but for simplicity, we refer to this also as SCC decomposition.
Decomposition Algorithm: Given an edge-labeled graph, we first build the
collection SCCALCout of 2` − 1 pairs 〈L,G′

L〉, where L is a non-empty subset
of L, and G′

L is obtained as follows. Given a label subset L, let GL denote the
graph which contains all (and only those) edges whose label belongs to L. We
first perform an SCC decomposition of GL [20]. This is followed by merging of
each of the SCCs of GL into a super node (i.e., contracting all the vertices inside
an SCC into a single node). This results in a directed acyclic graph (DAG), which
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we refer to as G′
L. Note that, by doing this we are not losing any reachability

information, since all the vertices inside an SCC are mutually reachable. This
completes the description of our ALC+SCC algorithm.
Query Algorithm: Given an LCR query (s, t, L), the algorithm first locates the
corresponding unlabeled DAG G′

L in SCCALCout, and then compares whether
the vertices s and t belong to the same SCC. If yes, the algorithm returns true.
Otherwise, we answer the query by performing a BFS over G′

L starting at s.
Time and Space Analysis: As the SCC algorithm is called once for each of the
2`−1 (unlabeled) graphs, the construction time of our algorithm is O(2`(n+m))
(but in practice, the running time is much smaller as many of these graphs may
contain much smaller than m edges). SCC algorithm stores the SCCs of 2` − 1
graphs, each with size at most O(n + m), thus, the total space consumption is
O(2`(n+m) log n) bits. The query algorithm performs BFS on the relevant graph
in O(n+m) time to answer LCR queries. Note that for undirected graphs, the
query algorithm simply needs to check whether the two query vertices belong to
the same SCC or not, and hence queries can be supported in O(1) time. This
completes the description of our ALC+SCC method.

3.3 ASL Method

As mentioned above, ALC+SCC method improves upon the query time over
the naive ALC method. In what follows, we show that we can improve the query
time even further (at the cost of negligible space increase) by incorporating the
landmark indexing (LI) method on top of the ALC+SCC method, resulting in
an algorithm which we call ASL (ALC+SCC+LI). As we will see later in Sec-
tion 4, this combined method performs much better than any single algorithm
individually (ALC, ALC+SCC or LI) as it inherits the good traits from each one.

Index construction: We use ASLout to refer to the output of the ASL al-
gorithm, which consists of a set of 2` − 1 pairs 〈L,G′′

L〉, for every non-empty
label subset L, and G′′

L is constructed by first selecting the corresponding graph
G′

L from SCCALCout, and applying landmark indexing on it. Note that, in our
case, we apply landmark indexing on unlabeled graphs (DAGs). To do so, for
each landmark v in each of these unlabeled DAGs, we store the set of all ver-
tices reachable from v, referred to as Ind(v), as part of the index for v. For
non-landmark vertices, our algorithm does not store any data.
Query Algorithm: Given an LCR query (s, t, L), the algorithm first checks
whether s is a landmark. If so, it answers by looking at Ind(s). Otherwise, it
starts a BFS from s to either reach t or reach a landmark v for which t ∈ Ind(v).
Then answer true; otherwise, return false.
Time and Space Analysis: The construction of LI for each unlabeled graph
G′

L, with n′ vertices, m′ edges and z landmarks, takes O((n′ log n′ + m′)z)
time [24] (by substituting ` = 1 in the construction time for LI). The algorithm
constructs indices for each landmark in each of the 2`−1 (unlabeled) graphs, (in
addition to the construction of the ALC and SCC decomposition from the previ-
ous sections. Consequently, the overall construction time is O(2lz(n log n+m)).
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Table 1: Worst-case space, query time, and construction time complexities of all
three algorithms. z denotes the number of landmarks chosen, and ` = |L|.

Space (bits) Construction Time Query Time

LI O(nz2`(logn + `)) O((n(logn + 2`) + m)z2`) O(n + m + z2`)

ALC O(2`(n + m) logn) O(2`(n + m)) O(n + m)

ALC+SCC for Directed O(2`(n + m) logn) O(2`(n + m)) O(n + m)

ALC+SCC for Undirected O(2`n logn) O(2`(n + m)) O(1)

ASL for Directed O(2`zn logn) O(2`z(n logn + m)) O(n + m)

The space complexity of ASL for storing G′′
L is O(n′z log n′) bits, So, the overall

space usage is bounded by O(2`nz log n) bits. The query time depends on the
size of the query graph G′′

L. The query algorithm performs a BFS over the graph
G′; as a result, it takes O(n′ + m′) time. For an undirected graph, we do not
use LI in but simply use the ALC+SCC to answer the queries, and hence the
amount of space and query time for an undirected graph are the same as that
for the ALC+SCC method. We summarize the worst case space, query time and
construction time complexities of all our algorithms (along with LI) in Table 1.
Applying Compression: In all our methods, we convert the given labeled
graph into several unlabeled graphs, and at query time, perform a BFS on one
of those unlabeled graphs. Hence, to save the space further, we apply a standard
compression scheme (we use gzip in our experiments) on these unlabeled graphs.
As we will see later, the query time does not get effected much since we only
need to decompress one of these graphs at query time. In all our experiments,
ALC, ALC+SCC, and ASL always refer to the corresponding methods described
earlier with the gzip compression applied on the resulting data structure.

4 Experiments

In this section, we evaluate our approaches against the LI method. We use the
following three standard criteria to judge the competing algorithms:

– Response time: time in milliseconds (ms).
– Memory: index space taken in Kilobyte (Kb).
– Construction time: preprocessing time to create the index in seconds (s).

All of our approaches i.e., ALC, ALC+SCC, and ASL are implemented in
C++. Test cases and all implementations are accessible as open-source for future
studies1. Although ASL uses LI as subroutine, it is worth mentioning that the
input to ASL is an unlabeled graph whereas LI takes a labeled graph as input,
and hence the indices constructed by these two methods are totally different.
More specifically, as part of the index, ASL stores vertices that are modified
by the SCC decomposition without any associated labels, while LI stores initial
vertices of the given graph along with some label subsets.

1 https://github.com/MSNTCS/ALC

https://github.com/MSNTCS/ALC
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Table 2: The table below lists all the data sets that we use in our work.
DataSets |V | |E| |L| Label? DataSets |V | |E| |L| Label?

Synthetic 1 100 242 4 Yes robots 1400 2900 4 No
Synthetic 2 500 2485 4 Yes Advogato[14] 14010 70472 4 No
Synthetic 3 5000 12492 4 Yes webGoogle [16] 875K 5.1M 8 Yes
Synthetic 4 100 485 8 Yes webStanford [16] 281K 2.3M 8 Yes
Synthetic 5 1000 2994 8 Yes WebBerkstan [16] 658K 7.6M 8 Yes
Synthetic 6 2000 5994 8 Yes Youtube[29] 15K 10.7M 5 No
Synthetic 7 5000 24985 8 Yes StringFC[22] 15K 2M 7 No

BioGrid[18] 64k 1.5M 7 No
StringHS[21] 16K 1.2M 7 No

We use the following setup for our work. The experiments were performed
on a windows machine with intel i7-6700 processor, 32 GB memory, and using
single-thread. The number of landmarks in both (ASL and LI) approaches was
set to be 10 percent of the number of vertices of the corresponding input graph.

Datasets. There are two types of data sets used in our experiments, synthetic
and real-world data sets. We use 9 different real-world data sets in our
experiments, which are chosen mainly from SNAP [16], and also from a variety
of other sources. These are 9 of the 14 real-world data sets that were used in
the experimental evaluation of the LI algorithm [24]. (The remaining 5 data
sets were accessible at the time of our experiments.) For the unlabeled data
sets, labels were augmented randomly, with label set size ` = 4 or 8. BioGrid,
StringsFC, and StringsHS are originally undirected due to the structure
of the graph representing protein relations. In addition, we also use synthetic
graphs that are generated by SNAP [15, 16] using Scale-Free Model (SF). The
direction and labels are augmented to the synthetic graphs randomly. For all the
synthetic graphs, the size of label set is either 4 or 8. The reason why we chose
preferential attachment over other graph generation models is that the scale-free
model follows the power-law connectivity distribution [3], thus, making them
more likely to be close to real-world graphs. The power-law connectivity
distribution parameter α is set to 2.5 to simulate real-world networks [1]. Table
2 shows all information regarding data sets used in our experiments.

Queries. Four types of query sets were used in these experiments, two true and
two false query sets. Each query set contained either t (= 1000) true queries or
t false queries. For both true and false-query sets, we considered two different
label sizes `/4 and `−2, where ` is the total number of distinct labels in the input
graph. For query generation, we followed the same methodology as the landmark
indexing algorithm [24]. For completeness, we describe the details here. Given a
labeled graph G = (V,E,L), the query generation starts by selecting a random
vertex v ∈ V , and then generates a random number r between 50 + log n and
50 +n/50, where n = |V |. Then, the procedure begins a loop for t/100 times. In
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each round, the procedure chooses another random u ∈ V and generates 10 label
sets L1, ..., L10. For each label set Li, for 1 ≤ i ≤ 10, the procedure runs a BFS
to check whether the LCR query (v, u, Li) returns true or false. In the BFS
traversal, the procedure counts the number of vertices visited, say r′. If r′ < r,
the procedure disregards the query and runs the loop from the beginning. The
procedure also disregards duplicates and runs until we find all t true-queries
and t false-queries.

4.1 Performance Analysis

In this section, we compare the performance of ALC, ALC+SCC, and ASL
methods with LI on both real-world and synthetic data sets mentioned in
Table 2. In particular, we will compare the query time, space usage and
construction time for all these methods. From this comparison, in what follows,
we conclude that ASL method takes much less space and query time compared
to LI, while taking larger construction time.

Query Time. The first experiment is designed to measure the query time of
each approach. Figures 2 and 3 depict query times of true and false queries,
with label set sizes `/4 and `− 2.

(a) (b)

Fig. 2: Query times for ALC, ALC+SCC, ASL and LI algorithms, measured in
µs (microseconds). Here `/4 refers to the number of labels in the query. (a)
true-queries (b) False-queries.

For ALC, response time was consistently slower than LI for both true and
false queries. As can be seen in Figures 2 and 3, the proposed ALC method
is between 3-75 times slower than LI for true queries and 1-29 times slower
for false queries. This makes sense, because in LI as soon as any landmark is
reached, the algorithm can immediately return true if the target node t is reach-
able from the landmark. Hence the speed up of LI over ALC for the true queries
is better than for false queries. It is worth mentioning that the query time for
ALC does not have an adverse effect with an increase in the query label set size,
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(a) (b)

Fig. 3: Query times for ALC, ALC+SCC, ASL and LI algorithms, measured in
µs (microseconds). Here ` − 2 refers to the number of labels in the query. (a)
true-queries (b) False-queries.

|L|, while this parameter has a more adverse impact on LI. The y-axis in the fig-
ures is log normalized. To improve the response time of the basic ALC method,
the ALC+SCC procedure was designed. This algorithm sacrifices construction
time to improve query time significantly. This trait can be particularly useful
for static graphs where construction time cost is paid only once. The ALC+SCC
approach performs significantly better on undirected graphs since this approach
can answer the queries in constant time (for both true and false queries) due
to the fact that after employing the connected component decomposition for
undirected graphs, the outcome would be disjoint subgraphs (connected com-
ponents). Consequently, ALC+SCC is significantly faster than LI in the case of
undirected graphs. For directed graphs, the query time largely depends on the
number of SCCs in the input graph. Therefore, the response time is relatively
slow compared to LI. In the worse case, ALC+SCC is 5 times slower than LI
for true queries and 11 times slower for false queries. This happens in the
case of relatively sparse graphs such as WebStanford, which give rise to many
small sized SCCs, and hence results in a larger DAG. The difference between the
false and true queries which were different in the case of ALC, has improved
in ALC+SCC by storing extra information about out-portal vertices for each
SCC. Again, as in the case of ALC, an increase in the query label set size does
not have an adverse effect on the query time for ALC+SCC.

Finally, the ASL method does not have original drawbacks that were present
in the LI as it neither depends on the query label set size, nor it stores any
labels in the indices. As a result, iterating over the indices is much quicker,
resulting in overall faster query time. In the best case, ASL performs 44 times
faster than LI for true queries over Synthetic 7 which is a dense graph,
hence, has large SCCs; and 51 times faster for false queries in WebBerkstan
which is a sparse graph, but the algorithm managed to store a good amount of
out-portal information to answer false queries much faster than LI.
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Memory Usage. In the second experiment, we compare the memory usage of
each method. Figure 4(a) shows the individual space usage of the 4 methods.
The space usage in both ASL and LI relies on the number of landmarks. The
details of our findings are described as follows.

(a) (b)

Fig. 4: (a) Memory usage for ALC, ALC+SCC, ASL and LI algorithms, measured
in Kb and (b) construction time for ALC, ALC+SCC, ASL and LI algorithms,
measured in s (seconds).

The ALC algorithm required less space than LI. As can be seen in Fig-
ure 4(a), the ALC method used between 1.3 (on Synthetic 4) and 81 (on
Youtube) times less space when compared to the LI algorithm. The difference
in space usage depends on the number of landmarks k used by the algorithm,
the size of the graph, and the total number of labels. The ALC algorithm had
the least notable memory usage benefits over LI for small graphs, Synthetic 1
and Synthetic 4. The ALC algorithm had the most notable space savings over
LI for WebBerkstan.

The ALC+SCC method improves query time over ALC, while at the same
time reducing the space usage. The ALC+SCC approach reduces space to the
extent that in the Youtube dataset, it uses 961 times less amount of space,
compared to the LI method. For the StringFC data set, it can store all the
necessary information to answer the queries with 532 times less amount of space
than the LI method. In some cases, like WebBerkstan, due to the fact that the
data set is not dense and does not have a lot of SCCs, space usage is 71 times
better than LI. Therefore, label set size, ` and the number of SCCs mainly affect
the space usage of ALC+SCC.

The space usage of ASL is in general more than that of the ALC+SCC, and
it depends upon various factors i.e., the density of the graph, the label set size,
number of SCCs, and the number of landmarks chosen. Also, the space usage
of ASL and ALC+SCC methods are the same in the case of undirected graphs
(since LI is not employed in ASL for undirected graphs). The amount of used
space in comparison to LI is up to 177 times less, and this is a significant saving
when we are especially dealing with large graphs. The denser the graph is, the
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lesser the space usage becomes for ASL.

Construction Time. Finally, we compare the construction time for all four
approaches in Figure 4(b) (here the y-axis is log normalized) for all the data
sets. Note that the times mentioned for ASL and LI are based on the number of
landmarks mentioned in the previous sections.

The ALC method takes 3-7 times longer construction time when compared
to the LI algorithm (see Figure 4(b)). ALC benchmarked best in comparison to
LI on Youtube, while it benchmarked the worst on Synthetic 7. The reason
why Youtube construction works well is that the label size of the graph is
small in comparison to other real-world graphs. Also the reason that Synthetic
7 behaves worst is the graph becomes dense and LI can perform well on dense
graphs. Applying the SCC decomposition adds more overhead in construction
time, which is a tradeoff to gain both space savings and query time performance
benefits. In some cases, ALC+SCC construction time is relatively comparable
to LI while in other cases due to the size of the networks and also the size of the
label set, the construction time is up to 37 times larger (on StringFC which
has the less number of SCCs with ` = 7). One can observe that the size of the
label set, the size and density of the graph, and the number of SCCs have a
huge impact on the construction. As expected, the ASL method consumes even
more construction time than the ALC+SCC (except for undirected graphs).
The construction time is up to 78 times slower than LI (on Synthetic 6). In
all cases, the construction time is proportionate to the label set size of the graph.

ASL Speedup. To accelerate the query performance in ASL even further,
we can increase the number of landmarks in each subgraph. In this set of ex-
periments, we increase the number of landmarks to |V |/5 and |V |/3, which we
refer to as ASLV/5 and ASLV/3, respectively. This improves the query perfor-
mance slightly without adding any substantial space overhead. Figure 5 shows
the space and the query time comparison of all methods. Figure 5(a) is for syn-
thetic graphs; numbers from 1 to 7 are assigned respectively to Synthetic 1 to
Synthetic 7. Figure 5(b) is for real-world graphs, in which numbers from 1 to 6
are assigned respectively to robots, Advogato, Youtube, webGoogle, WebBerk-
stan and webStanford. Increasing the number of landmarks in the ASL approach
improves query performance to some extent even though its space usage can be-
come higher. Even after increasing the number of landmarks in the ASL methods,
their space usage is still much smaller than that of LI (with fewer of landmarks).

5 Conclusions

In this paper, we introduce three novel algorithms to answer LCR queries. Com-
prehensive experiments on both real-world and synthetic data sets confirm that
our ASL algorithm supports the LCR queries faster with much less amount of
space, in comparison with the current state-of-the-art solution, landmark index-
ing (LI) algorithm, at the cost of increased construction time. As is the case



Improved Graph Indexing Algorithms for LCR Queries 13

(a)
(b)

Fig. 5: Space and query comparison for all methods including ASL with different
number of landmarks on (a) synthetic data sets and (b) real-world data sets.
Query times are for true queries with label size `/4.

with Landmark Indexing, the space usage of our index structures is also expo-
nential in terms of the alphabet size. It would be an interesting open problem
to design an indexing structure that is scalable with the alphabet size. Another
challenging problem is to support LCR queries for graphs changing dynami-
cally, where either the edges are inserted/deleted dynamically or the labels are
modified dynamically.
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