Autotuning CUDA:
Applying NLP Techniques to LS-CAT

Lars Bjertnes, Jacob O. Tgrring, and Anne C. Elster

Norwegian University of Science and Technology (NTNU), Trondheim, Norway
lars.bjertnes@outlook.com, {jacob.torring, elster }@ntnu.no

Abstract. The abstract relation between hardware parameters and pro-
gram performance makes setting program parameters a difficult task.
Without autotuning, software can miss low-level optimizations, result-
ing in lower performance. Traditionally, time-consuming trial and error
search methods have been the staple of autotuning. Applying Natural
language processing (NLP) based machine learning (ML) methods to
source code as a means to perform autotuning-oriented tasks is a growing
topic. Earlier research has, with success, performed a range of different
autotuning tasks using multiple source code languages. However, most
of the source code data is CPU-oriented, with very little GPU code.
The LS-CAT (Large-Scale CUDA AutoTuning) dataset [BTE21] uses
CUDA GPU-based kernels and generates a dataset to perform thread-
coarsening.

This paper implements several custom NLP-ML pipelines to evaluate
MlL-based thread-coarsening using the LS-CAT dataset, and a custom
scoring function to find the performance impact for any choice. Sev-
eral model configurations were able to beat both random choice, 0.9400,
and only selecting the largest thread-block (1024), 0.9437. Finally, the
best model achieves a score of 0.9483, giving an average performance
increase and speedup of 0.49 percent over the largest thread-block. Im-
plementing self-attention mechanisms proved to counteract over-fitting,
while a multi-label based learning task outperformed other approaches.
Compared to previous datasets [Cum+17], the LS-CAT dataset’s higher
thread-coarsening precision gives a more precise evaluation of the model’s
performance. The inst2vec embedding used in earlier works was unable
to correctly parse the CUDA LLVM IR tokens, resulting in high data
loss. Approaches to addressing this, and other ideas for future work, are
also included.

Keywords: Natural Language Processing - Autotuning - CUDA

1 Introduction

As hardware variation and complexity increased, software is increasingly strug-
gling to keep up with the specificity required to have full system utilization. Low
hardware utilization created a high gap between actual program performance and
theoretical program performance. The cause is a lack of low-level optimizations,

2 L. Bjertnes et al.

which needs hardware taken into account. There is usually a complex relation-
ship between a specific program parameter and the total change in performance.
This means that an extensive search through the parameter space is required
in autotuning. Searching through all possible legal combinations of parameters
is a highly time-consuming process, as for each time search step, the autotuner
compiles and executes the program. Then, based on the results, the subsequent
search step is performed until an optimal program variation is found. A bet-
ter alternative would have an autotuner that can set better parameters without
searching, compiling, or executing the program.

Machine learning is a method that is well suited in situations where there is an
abstract relationship between the data points, and where there is a large enough
dataset and enough data processing power [BH19]. Autotuners using source code-
based ML methods require a dataset of source codes and program results based
on different parameters. Earlier attempts at doing machine-learned autotuning,
range in the task performed, source code language, and dataset. Some of these
attempts focused on attempting to perform thread-coarsening on an OpenCL
dataset created by end2end-dl [Cum+17]. This dataset is lacking in size and
general representation of source code. With that in mind, the LS-CAT project
[BTE21] created a CUDA-based dataset. The LS-CAT dataset consists of CUDA
source code kernels and their runtime data. LS-CAT has more thread-block sizes,
semi equivalent to thread coarsening level, and significantly more source code
samples. This paper is based on [Bje21] which was written in collaboration with
the other two authors.

The primary goal of our work is to apply machine learning and NLP, natural
language processing techniques to LS-CAT, and using ML-model selected thread-
block sizes to increase the performance. Additionally, we evaluate the impact of
both ML-attention-mechanisms and inst2vec [BJH18] on the machine-learned
model’s performance. To our knowledge, this is the first implementation of an
end-to-end machine learning pipeline, designed for CUDA source code data. In
particular, this is the first implementation applying ML NLP techniques to our
LS-CAT dataset, and as far as we know. Our attempt at using the inst2vec
embedder with CUDA LLVM IR tokens is also novel.

Our approach is also the first to outperform both random choice (0.94) and
best default option (0.9437) on a large CUDA-based dataset, with the best model
configuration scoring 0.9483. Our findings indicate a generalized learning process,
not memorization, implying that CUDA source codes have learn-able abstract
features.

The paper is structured as follows: Section 2 presents autotuning and our ear-
lier LS-CAT project as well as the related work for the paper. Section 3 describes
the embedding pipeline, while Section 4 describes the ML model. In Section 5
we show the results from some key model configurations. In Subsection 5.1 we
discuss and evaluate the results. Section 6 draws a conclusion from our work
with outlines for future work.

Autotuning CUDA: Applying NLP Techniques to LS-CAT 3

2 Background and Related Work

In this section we will introduce and discuss previous related work on Auto-
tuning, CUDA, and our LS-CAT CUDA Autotuning dataset, including how to
create NLP models to autotune code.

Autotuning is a tool to optimize programs for the underlying hardware given
the parameters of the program. These parameters are semantically invariant,
but can change the way the program runs, including the extent to which it uses
cache, the order of operations, and more. We can use autotuning techniques to
generalize the process of finding a good combination by searching through the
parameter space. The autotuning process works by initializing the parameters,
compiling the program for the targeted machine, running the program, and then
measuring the results. The program keeps a record of each combination of pa-
rameters’ performance on the hardware. We repeat this process until we find a
satisfactory result. However, each run of the program can potentially have a high
run time. Thus, evaluating a large search space of parameters can therefore be
a very time-consuming process. We therefore introduce in this paper a method
to predict optimal configurations for a program directly through source-code, to
skip the time-intensive process of testing out each configuration.

CUDA [Bil] is a programming environment provided by Nvidia for GPGPU
computing on their graphics cards. CUDA functions that run on the GPU are
called kernels. Functions are either marked as global if run from the system, or
device (GPU) if called from the global kernel. The global kernel needs a block
parameter and grid parameter, which is a three-dimensional representation of a
collection of threads. Each block should be divisible by 32 (known as warp size)
as a warp executes all 32 thread simultaneously (or idle some of them). A block
can at most run 1024 threads, which each can do one computation, at the same
time. The optimal number of threads per block is not always 1024. E.g., several
smaller blocks would have more unhindered register access.

2.1 end2end-dl/deeptune

The motivation for end2end-dl [Cum+17] was replacing manually crafted heuris-
tics with a machine-learned model which formulates heuristics based on source
code. The dataset consists of 17 individual kernels, executed with different hard-
ware systems and either on the GPU or CPU, and with 6 separate thread coars-
ening factors. The source code is stored as raw source code, but each line code
is turned into a sequence of tokens, which are then turned into embeddings by
the model. The model itself is a combination of LSTM cells, which are good at
capturing sequenced information and is often used for learning language features
in a machine learning context.

They showed that their solution could outperform machine-learned methods
relying on human-designed heuristics and features by 14%. Deeptune approached
it as a multi-classification problem, and their competitor as several binary classi-
fications. Both models scored low when doing thread coarsening on the NVIDIA
GPU, most likely due to the small number of training samples.

4 L. Bjertnes et al.

2.2 NCC

NCC [BJH18] tries to create a general machine-learned model to do classifica-
tion and regression on source code of different origin languages. However, NLP
does not take into account the nature of code structure, and NCC' proposes their
embedding inst2vec to take the specificities of source code into account. The gen-
eral tasks they want to accomplish are device mapping, algorithm classification,
run-time prediction, and thread coarsening.

By making their model use the IR, the model should work on languages that
can create an IR without creating extra language support themselves. This also
made it possible to use source code from many different sources. For example,
the code embedding inst2vec uses a skip-gram method on the IR lines. This is
then combined with the contextual flow graph, which represents how different
parts of the code depend on each other. NCC' then uses a series of recurrent
neural networks (RNN), for the model itself.

The setup inst2vec NCC scored higher than other models for algorithm clas-
sification, at around 95% accuracy. They also outperformed deeptune on both
device mapping and thread coarsening, using the same dataset. inst2vec NCC
showed that a combination of using both the dependencies or flow and the se-
quenced nature of code could yield better results than focusing on just one
aspect.

2.3 LS-CAT

The goal of our LS-CAT project [BTE21] was to increase available GPU source
code for machine-learned autotuning. While earlier works focused on OpenCL
GPU code, there seemed to be no attempts at creating a large CUDA-based
dataset. Our project used publicly available source code aggregated from GitHub.
We reformatted each project into a collection of executable CUDA kernels, which
were executed with a range of different thread block sizes and matrix sizes. The
CUDA automatic thread block size tool was evaluated, but lacked sensitivity
to matrix sizes. LS-CAT produced around 19 683 kernels, with 20 thread-block
sizes, of which 16 are one dimensional. The increased amount of source code
could hopefully make automatic thread coarsening possible.

In the LS-CAT dataset for the Nvidia T4, the 1024 thread block size was the
superior choice and performed on average 94.438% from the optimal, meaning
around a 5.56% speedup can be achieved from always picking the optimal choice.
A machine-learned model needs to score higher than 94.438% to give any speedup
at all.

Autotuning CUDA: Applying NLP Techniques to LS-CAT 5

3 Embedding pipeline

Any machine learning process consists of several steps. Each step is dependent
on the previous and is therefore done in a chronological, often iterative process.
The three first sections detail transforming raw data into ML readable data.
In the first section, the raw source code data is transformed to an intermedi-
ate representation (IR). To transform the IR to numerical data, two different
methods inst2vec and FastText are tested in the Sections 3.2 and 3.3. Lastly,
the regression model is described in Section 4.1.

3.1 Source Code to Intermediate Representation

While pure source code could be used more or less as-is for machine learning,
with some small conversions to numeric values, using the IR, intermediate rep-
resentation would be far superior. In addition, the intermediate representation
has many advantages when generalizing the code. Firstly, the variable names
are all standardized to simple register references, which reduces the variance be-
tween each kernel and should make actual distinctions more easily identifiable.
The second advantage of using IR is that the machine-learned model would be
source code independent and utilize all source codes that could be transformed
to the same IR. CUDA has its intermediate representation, PTX, that is only
used internally in the NVCC compiler. With the correct settings, the PTX file
can be extracted.

In the related works section, most of the previous attempts made use of the
inst2vec pipeline. This pipeline requires Clang LLVM IR, which CUDA can be
compiled into. However, compiler linking can be a tedious process, especially
when using unfamiliar modules. The Clang CUDA guide was therefore followed
closely [Pro]. This guide, however, was not enough to seamlessly create IR from
CUDA, probably due to some version or path issues, and some modifications
had to be made. Some kernels were unable to be transformed into IR. In total,
19540 out of 20257 were transformed or 96.46%.

3.2 The inst2vec Pipeline and NCC

The inst2vec pipeline is used in several recent papers [Bra+20] [Cum+20], to
create embeddings based upon LLVM IR, and is trained using a range of different
source codes. Since the data embedding is one of the first steps taken in an NLP
context, the efficiency of this inst2vec method needs to be evaluated as early as
possible.

The NCC project provides a pre-trained inst2vec model for the embedding
process, but it is possible to train the embedder with custom data. Training a new
inst2vec model with custom data was not relevant for our project for two main
reasons. First, all the data should be conserved and not exposed to the model to
avoid any form of preemptive over-fitting that could occur. Second, the training
itself is a time-consuming process. This would delay all further development and
drastically halt any project progress.

6 L. Bjertnes et al.

While the inst2vec was not trained on the CUDA LLVM IR codes, it was
still capable of embedding parts of the code. Around 55% of code was not turned
into embeddings. In comparison, the OpenCL kernels used initially had approx-
imately 12-13% of non-embedding code. It was neither apparent what kind of
data was missing, nor how vital these statements might be. We adapted the
NCC model as a classifier of the dataset, as we regarded it as one of the more
straightforward tasks to complete and evaluate.

3.3 FastText Embedding

To evaluate if the inst2vec data loss did indeed pose a bigger problem than the
potential benefit of adopting the pipeline, independent text embedding had to
be tested out.

For this purpose, the tool FastText [Boj+16] was chosen. FastText, developed
by Facebook, has some key features that make it stand out. It has the flexibility
of creating custom length vectors based on input — the ability to use both the
training methods skip-gram and a chosen bag of word. There are also additional
settings, such as learning rate, that can be easily modified. This offers a lot of
options, as different vector representations of the kernels could be tested out.
The perhaps the most notable feature of FastText is that unseen data can also
be represented by the embedding process, which was an issue with inst2vec.
This new unseen data would vectorize, where text with similar semantic and
syntactic values turns into similar vectors. A custom text preprocessing pipeline
was created to generate FastText training data. This could be reused to create
a vector representation of any LLVM IR image.

We make the training process significantly faster by storing all the embed-
dings, as the generation process is only done once. However, this does come with
a potential downside, as the embedding layer is completely ”frozen” for the entire
training sequence. The embedding is therefore unable to ”learn”. In this case,
the last layers and parameters should be able to take the weight of adjustments
needed, as shown in [Tam+21].

4 ML model design for LS-CAT

The NCC model, which was tested out previously, is LSTM based, and our new
model should also be based on LSTM modules as this would make a better
comparison between the embedding techniques instead of the later parts of the
model.

Our model as shown in Fig. 1, is structured such that the FastText em-
beds are fed directly into the LSTM module. However, the outputted tensor
has three dimensions, and both the embedder and dense linear layer works with
two dimensions. To solve this conflict, the outputted tensor is transformed. This
new tensor is then combined with the matrix information using the embedding
module. The resulting tensor goes through a series of linear layers, with each
layer reducing the number of neurons until the final layer reduces the tensor

Autotuning CUDA: Applying NLP Techniques to LS-CAT

CUDALLWIR Pytorch
modules
¢ Independent
FastText
embedder
FastText Embeds Source
data
LSTM
or Matrix id
LSTM+Self-Attention
module
Transformation Embedding module

Dense Linear layers

v
220 252 231 209215

Outputs - runtime per thread block size

[ets 21 259 210 b1z

Targets - runtime per thread block size

Fig. 1: Our model setup

8 L. Bjertnes et al.

to the target shape. Another more advanced model was also made, an LSTM
Encoder-Decoder with self-attention, the attention mechanism.

Index of optimal Selected thread-block size performance

target| putpuf | diff 0 diff_1 diff_14 diff_15
1 0 0.94 1 0.94 0.99
3 3 0.96 0.92 0.96 0.92
0 14 1 0.94 (X N X} 0.96 0.94
14 11 0.93 0.97 1 0.99
15 15 0.92 0.89 0.92 1

Performance = 0.96

Fig. 2: Evaluating the performance of the regression model

4.1 Regression Oriented Learning methods

Regression techniques can be used for this problem, since the score of each
thread-block can be expressed as discrete numbers and not just an optimal
choice. A matrix IR combination can be given as input to the model, which will
produce a series of discrete numbers, one for each thread-block. A prediction
would be picking the optimal value, as that number would be linked directly
to a specific thread-block size. Alternatively, the model could output a single
digit for the input of matrix, IR, and thread-block. This setup would, however,
require multiple predictions and results in comparison to finding the optimal
thread-block size. The input to the model should also be based on a normalized
distribution. It is therefore necessary to transform the target values, using a
transformation function. In this case, a modified Softmax function, was applied
to the dataset target values.

The target values are now all floating in the range of 0-1, which makes it pos-
sible to utilize BCE loss, not in the sense of binary cross-entropy loss, but rather
multi-label loss. Each thread-block size can be described as being a deviation
from the optimal or partly being the optimal class. The learning task measures
the performance by letting the output layer select a potential thread-block size
and evaluating the average performance of the choices made. This process is
illustrated in Fig. 2.

Selected thread-block sizes are marked as green, the overlap with the optimal
thread-block size is marked with a border, non-selected optimal sizes are marked
blue. As the model is not explicitly trained to identify the best block size but
rather good options, measuring accuracy is not essential.

0.80

0.75

0.65

175

150

1.00

0.75

0.50

0.25

0.00

Autotuning CUDA: Applying NLP Techniques to LS-CAT

LSTM 10x target transform BCE

Performance

—— Training Loss: 0.948] — Validation Performance
Test Loss: thread-block size 1024 performance
—-~ random choice
0.947
0.946
0.945
0.944
0.943
0.942
0.941
0.940
o 50000 100000 150000 200000 250000 300000 350000 400000 o 50000 100000 150000 200000 250000 300000 350000 400000
Training steps Training steps
Fig.3: The BCE LSTM model
LSTM x10 target transform MSE
Loss Performance
B 0.948 o
—— Training Loss: —— Validation Performance:
Test Loss: thread-block size 1024 performance
0.9471 —— random choice
0.946
0.945
0.944
0.943
0.942
0.941
0.940
o 100000 200000 300000 400000 500000 600000 700000 o 100000 200000 300000 400000 500000 600000 700000

Training steps

Training steps

Fig.4: The MSE LSTM model

10 L. Bjertnes et al.

LSTM 10x target transform and self-attention BCE

Loss Performance

—— Training Loss:

Test Loss: 0.948

0.90

0.85 0.946

080 0.944

0.75
0.942

0.70

0.940

0.938 — Validation Performance
thread-black size 1024 performance
—-~ random choice

0.60

o 50000 100000 150000 200000 o 50000 100000 150000 200000
Training steps Training steps

Fig.5: The BCE LSTM model with self-attention

5 Results

The model based on just LSTM was trained using both BCE multi-label loss and
MSE loss, seen in the Figs. 3-4. The performance graphs are somewhat similar,
however the loss graphs are very different. In the case of MSE loss, there is a
clear case of over-fitting based on the discrepancies between training and testing
loss. The BCE loss graph has high oscillation for the training loss, but the test
loss remains stable in the middle.

The self-attention based model was also trained using both BCE multi-label
loss and MSE loss. The MSE loss made the model behave similar to the earlier
non attention based model. The BCE loss, seen in the Fig. 5, has its own char-
acteristics. The gain in performance over time corresponds to the drop in test
loss, while the early test loss has a high level of oscillation.

Overall the best configuration was the multi-label loss with a twelve expo-
nent, self-attention, and 256 batch size. Scoring a performance of 0.9483, this
exact performance is an outlier and only case of the self-attention networks per-
forming better than those without.

5.1 Analyzing impact of embeddings

The choice of embedding method and embedding sophistication proved to have
a significant impact on overall performance in all learning tasks, [BJH18]. Due
to the LS-CAT dataset consisting of CUDA LLVM IR, the inst2vec method was
unable to translate a sufficient amount of tokens. More than half of the IR was
lost during the embedding process using the inst2vec embedder. Therefore, the
sophisticated inst2vec embedder had to be replaced with a simpler skip-gram-
based embedder. The alternative embedder outperformed the inst2vec embedder,
most likely due to the loss-less embedding process. If the inst2vec embedder were
to be modified to handle more CUDA LLVM IR tokens and have the same token

Autotuning CUDA: Applying NLP Techniques to LS-CAT 11

loss rate as in its original case of around 12 percent, inst2vec might perform
better than the simpler skip-gram FuastTexrt embedder.

To accommodate for the CUDA LLVM IR tokens, the inst2vec embedder has
to be modified, or another complex embedder could be created using the same
principles as those used in the inst2vec.

5.2 LS-CAT ML Models Results

Overall both the regression-based tasks outperformed the choice of relying solely
on the thread-block size 1024. The second model consisting of a self-attention
module between the LSTM encoder decoders performed somewhat worse than
the pure LSTM model. However, the semi adversarial behavior of the encoder-
decoder attention, where adjustments in the encoder or attention increase the
training difficulty for the decoder, increased the generality of the model. In the
case of the self-attention with BCE, multi-label loss, the Fig. 5 show these three
qualities: The adversity effect is apparent in the loss graph. The test loss is
the average of the training loss. The validation performance has a high degree
of overlap between the training loss training step-wise. Combined, all of these
factors would indicate an actual learning process and not over-fitting. While
not scoring higher than the pure LSTM model, machine learning has to create
general model solutions to complex problems, and this was displayed to a much
higher degree in the self-attention-based model.

The regression method using MSE loss seen in Fig. 4, displayed the highest
amount of over-fitting, and the validation training loss hovered high above the
training loss.

5.3 LS-CAT ML Model Architecture Variations

Several variations in model dimensions and combinations of loss types were tried
out. At the same time, increased model complexity may increase model perfor-
mance at the cost of training performance and potential over-fitting. Except for
the dense output layers, the input size determined directly or indirectly all the
other layer’s parameter count. Input sizes larger than 80 incurred a significant
training speed reduction, and input sizes above 240 would be unfeasible time-
wise. No increase in performance was observed at an embedder input size larger
than 40. If the models did not use this self-attention model, the input size would
not dictate all the dimensions, and different values for sizes, could be tested.
Model depth is the number of layers the model uses in its internal structure.
The depth is one way to increase a model’s ability to represent abstract rela-
tionships between the data and internal data structures. The models relied on
5-10 linear dense layers. Any more layers showed no increase in model perfor-
mance. This was also the case for an increase in the amount of LSTM layers or
amount of stacking. The likely reason these potential improvements failed was
the increased distance between the target parameters and the crucial first layer
of LSTM cells. The relation between these parts would be a lot more abstract

12 L. Bjertnes et al.

with the added model depth. The multi-target classification was judged not to
be a feasible solution to the selection of adequate thread-block sizes

5.4 Evaluation of our LS-CAT Dataset

To evaluate our LS-CAT dataset, one could start looking at the performance of
the models or compare the results achieved at LS-CAT with the results from the
[Cum+17] OpenCL dataset. However, comparing the results from each dataset
would be imprecise due to the difference in select-able thread-block sizes or
thread-coarsening levels. The earlier works dataset has only six levels, compared
to our LS-CAT dataset, sixteen levels.

Fewer possible choices result in a higher degree of distinction between the
choices, and this distinction might both make thread-coarsening appear more
lucrative and also easier to perform. The different results from each dataset can
therefore not be compared fairly.

For these reasons, our LS-CAT dataset can not be judged by making a simple
model result comparison with this earlier dataset. Instead, seeing how the models
performed on our LS-CAT, compared to random choice, and relying solely on
the best block size would be better. There was enough semantic information in
the kernel IR, for a model (0.9483) to outperform both random choices (0.94)
and only select the largest thread-block size (1024) (0.9437). Several models
gave results indicating strongly that a learning process and not memorization
was performed. Also, a model relying on only the matrix run-time and name
gave results similar to random choice. The presence of this semantic information
implies both that the LS-CAT dataset is valid and that a kernel’s source code
has sufficiently distinct information that makes abstract learning tasks possible
to perform. Taken this into account, the LS-CAT dataset works.

6 Conclusions and Future Work

Performance tuning tasks are difficult to perform effectively manually. However,
without tuning, software ends up lacking key low-level optimizations, causing a
drop in overall performance. Furthermore, current autotuners rely on extensive
search processes, which can end up being more time-consuming than time-saving.
As shown in this paper, machine learning can reduce or almost nullify the search
process, and in turn, create better autotuners.

Our goal of having a model select thread-block sizes to increase the perfor-
mance was met. With the best configuration scoring 0.9483, an increase of 0.49
percent over the largest block. The multi-label loss-based regression proved to
be the most efficient. While the self-attention-based models had lower overall
performance, the network’s self adversarial properties increased the learning dif-
ficulty and increased the generality. The self-attention model with multi-label loss
indicated more strongly a learning process than the other models. Overall the
results for the different models indicated that the semantic information in the

Autotuning CUDA: Applying NLP Techniques to LS-CAT 13

source code was enough to learn the abstract relationship between relative per-
formance, source code, thread-block size, and matrix size. This would strengthen
earlier claims that source code can be used to learn abstract program features.

The embedding process of inst2vec, which was deemed significant in earlier
projects, had issues with data loss when transforming the intermediate repre-
sentation to numeric data. The CUDA-based LLVM IR had around five times
the data loss as the OpenCL LLVM IR, which the earlier projects utilized. The
solution to this was implementing skip-gram-based methods using the tool Fast-
Text, as this is a fully lossless process. The potential benefit of a more complex
embedding process that does not also include high data loss remains, therefore,
unexplored on LS-CAT.

Current and Future Work

Ideally, an embedding process more adapted to source code and handling a
broader range of tokens should be developed. This sophisticated embedder could
be more fairly tested in comparison with lossless skip-gram. This could be po-
tentially done by improving upon the inst2vec pipeline and its interpretation
of LLVM IR tokens. inst2vec’s biggest issue revolved around data-loss. There
are several ways to mitigate this data loss. For instance, improve the handling
for unseen tokens, rather than just dropping them. Or instead, increasing the
amount of seen tokens during training would directly diminish data loss. As a
last alternative, one could have a custom user-defined parser for the unseen to-
kens. This user-defined parser would avoid the potential issue and not put too
much work on the developers.

Acknowledgements

The authors would like to acknowledge the Faculty of Information Technology,
Mathematics and Electrical Engineering and the Department of Computer Sci-
ence at NTNU for their PhD stipend and support of our HPC-Lab that facilitated
the development of this project.

References

[Boj+16] Piotr Bojanowski et al. “Enriching Word Vectors with Subword In-
formation”. In: arXiv preprint arXiv:1607.04606 (2016).

[Cum+17] Chris Cummins et al. “End-to-End Deep Learning of Optimization
Heuristics”. en. In: 2017 26th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT). Portland,
OR: TEEE, Sept. 2017, pp. 219-232. 1SBN: 978-1-5090-6764-0. DOT:
10.1109/PACT. 2017 .24. URL: http://ieeexplore. ieee.org/
document/8091247/ (visited on 10/31/2020).

14 L. Bjertnes et al.

[BJH1S]

[BH19]

[Bra+20]

[Cum+-20]

[Bje21]

[BTE21]

[Tam+-21]

[Bil]

[Pro]

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. “Neu-
ral Code Comprehension: A Learnable Representation of Code Se-
mantics”. en. In: arXiv:1806.07356 [cs, stat] (Nov. 2018). arXiv:
1806.07336. URL: http://arxiv.org/abs/1806.07336 (visited on
10/31,/2020).

Tal Ben-Nun and Torsten Hoefler. “Demystifying Parallel and Dis-
tributed Deep Learning: An In-Depth Concurrency Analysis”. In:
ACM Comput. Surv. 52.4 (Aug. 2019). 1SsN: 0360-0300. DOI: 10.
1145/3320060. URL: https://doi.org/10.1145/3320060.
Alexander Brauckmann et al. “Compiler-based graph representa-
tions for deep learning models of code”. en. In: Proceedings of the
29th International Conference on Compiler Construction. San Diego
CA USA: ACM, Feb. 2020, pp. 201-211. 1SBN: 978-1-4503-7120-9.
DOI: 10.1145/3377555.3377894. URL: https://dl.acm.org/doi/
10.1145/3377555. 3377894 (visited on 10/31/2020).

Chris Cummins et al. “ProGraML: Graph-based Deep Learning for
Program Optimization and Analysis”. en. In: arXiw:2003.10536 [cs,
stat/ (Mar. 2020). arXiv: 2003.10536. URL: http://arxiv.org/
abs/2003.10536 (visited on 10/31/2020).

Lars Bjertnes. “Applying Natural-Language-Processing-Based Machine-
Learning Techniques to our Large Scale CUDA AutoTuning Dataset”.
MA thesis. Trondheim, Norway: Dept. of Computer, Information
Science, Norwegian University of Science, and Technology (NTNU),
2021.

Lars Bjertnes, Jacob O. Tgrring, and C. Anne Elster. “LS-CAT: A
Large-Scale CUDA AutoTuning Dataset”. In: IEEFE International
Conference on Applied Artificial Intelligence (ICAPAI 2021) 31
(May 2021).

Thierry Tambe et al. EdgeBERT: Sentence-Level Energy Optimiza-
tions for Latency-Aware Multi-Task NLP Inference. 2021. arXiv:
2011.14203 [cs.AR].

Sebastian Jodlowski Bill Fiser. BEST PRACTICES WHEN BENCH-
MARKING CUDA APPLICATIONS. URL: https://developer.
download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9956-best-practices-when-benchmarking-cuda-applications_
V2.pdf. (accessed: 01.10.2020).

LLVM Project. Compiling CUDA with clang. URL: https://1lvm.
org/docs/CompileCudaWithLLVM.html (visited on 01/24/2021).

