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Abstract. The paper proposes a novel method of image representation.
The basic idea of the method is to transform color images to continuous
parametric surfaces.
The proposed technique is based on a class of special basis functions, de-
fined on the polygon grid. Besides a flexible and symmetric construction,
these basis functions are strictly local and Cd-smooth on the entire do-
main. Having a number of unique features, the proposed representation
can be used in various image processing tasks.
The main purpose of this paper is to demonstrate the process of the
image transformation and discuss possible applications of the presented
technique.
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1 Introduction

The proposed paper is concerned with the development of the image processing
tool that expresses an image as a linear superposition of special basis functions.

The approximation technique presented in this paper is a mixture of polygon
image tessellation and discrete image transformations. The processed image is
decomposed into a set of pre-generated basis functions and real coefficients. The
transformed image is then represented as a continuous surface, thus, a number
of postprocessing techniques can be applied to that representation. For example,
one can apply finite element analysis (FEA) methods to image editing [15]. In
particular, B-splines were applied to image approximation [2].

Blending spline type constructions possess many possible applications, mainly
in Computer Aided Geometric Design (CAGD) [14], finite element analysis
(FEA) [6] and isogeometric analysis (IGA) [12], and in particular in image pro-
cessing [8]. Blending splines model a freeform surface representation, where lo-
cal surfaces are blended together to form global surface. There exist specialized
methods for evaluating these splines over triangular grids [3, 11] and tensor-
product-based grids [14]. The current paper presents a method for evaluating
the general surface construction over an arbitrary polygon grid such that the
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blending surface preserves Cd smoothness. One of the features of the blending
spline representation is achieving an accurate approximation on relatively coarse
domains keeping strict locality. This property allows us to handle abrupt color
changes smoothly.

In this paper we apply blending spline techniques to image approximation.
The novelty of the proposed approach is the preliminary sampling of the image
(polygonalization) with the aim of further blending of local regions. Since polyg-
onal regions are more flexible (have more degrees of freedom) than quadrilateral,
the proposed approach is promising compared to the tensor product spline ap-
proximation. Polygons cover freeform regions and can potentially be adaptive
to image properties: flat regions will have fewer sampling points than detailed
regions.

The paper is organized as follows. Section 2 focuses on the preliminary theory
which is relevant to the proposed technique. Two phases of image approxima-
tion are considered in Section 3. Section 4 presents numerical experiments and
comparisons. Section 5 summarizes the proposed work and identifies research
questions for future development.

2 Preliminaries

In this section we consider some of the theory regarding blending spline con-
structions over polygon grid which is relevant for this work.

2.1 Generalized barycentric coordinates

Let Pn ⊂ R2 be a polygon with vertices v1, v2, ..., vn, n ≥ 3. According
to [9], any functions ui : Pn → R, i = 1, ..., n, are called generalized barycentric
coordinates, if for all x ∈ Pn, ui(x) ≥ 0, i = 1, ..., n, and

n∑
i=1

ui(x) = 1,

n∑
i=1

ui(x)vi = x. (1)

One commonly used type of the generalized barycentric coordinates suitable
for arbitrary polygons is called mean value coordinates, which are defined as

ui(x) =
wi(x)
n∑
j=1

wj(x)

and

wi(x) =
tan(αi−1/2) + tan(αi/2)

||vi − x||
, (2)

where the angles αi = αi(x), 0 < αi < π, are shown in Figure 1.
These coordinates are used for a mapping between local polygon coordinates

and global coordinates on the parametric domain. The mapping between the
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Fig. 1. Notation of the mean value coordinates.

parametric domain and the Cartesian coordinate system is achieved by a linear
combination of basis functions defined in the parametric domain and control
points that belong to the Euclidean space.

2.2 Combined expo-rational basis functions

A parametric function that maps the domain Ω ⊂ R2 onto Rn is constructed by
the linear product of basis functions ϕi : Ω → R and corresponding coefficients
ζi ∈ Rn, i = 1, ...N . In matrix form this can be written as

S = ζT ϕ, (3)

where S is a continuous mapping S : Ω ⊂ R2 → Rn. Here, ϕ is a row vector of
the basis functions, ζ is a column vector of the coefficients.

The combined expo-rational basis functions, defined in [12, 13], were devel-
oped on a foundation of the theory of the expo-rational B-splines (ERBS), firstly
introduced in 2006 by L.T. Dechevsky et al. [5]. The concept of blending surfaces
can be briefly described as blending of local surfaces by underlying expo-rational
basis functions. Thus, the final surface possesses a hierarchical structure. How-
ever, this construction can be interpreted by formula (3), so that the functions
ϕi, i = 1, ..., N , are built using a combination of the underlying and local basis
functions.

Let us consider the evaluation of the combined expo-rational basis functions
in the one dimensional case.

Given a one dimensional domain I, which is subdivided into knot intervals
with a local parameter u ∈ (0, 1] defined on each interval. A univariate expo-
rational basis function defined along the parameter u is expressed as

B(u) =


Γ

u∫
0

φ(s)ds, if 0 < u ≤ 1,

0, otherwise,

(4)
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Fig. 2. Evaluation of the combined expo-rational basis functions in the one-dimensional
case: β is a set of local Bézier basis functions, ψk is one underlying expo-rational
function, ϕ is a product of these two sets that forms a locally defined set of the combined
expo-rational basis functions.

where

φ(u) = exp

(
− (u− 1/2)

2

u(1− u)

)
,

and the scaling factor

Γ =

 1∫
0

φ(u)du

−1 .
The expo-rational basis function, whose construction is based on (4), is pos-

itive, symmetric and strictly local on two neighbor knot intervals. The complete
basis is evaluated as a set of these basis functions defined for each knot with lo-
cal support on the neighbor knot intervals. Figure 2(b) shows one expo-rational
basis function ψk, defined on two knot intervals having kth knot as a common
knot. The symmetric part of the function ψk is evaluated as 1−B(u).

We select Bézier curves to be blended as one possible option. Bernstein poly-
nomials form a basis for Bézier curves and surfaces. In order to blend the local
Bézier curves, each curve is defined on each two neighbor knot intervals. Thus,
introducing a local parameter t over two knot intervals, one can express the local
Bernstein polynomials of degree d as

βd,γ =
d!

γ!(d− γ)!
tγ(1− t)γ . (5)

Figure 2(a) shows the set of Bernstein polynomials forming a basis for the
local Bézier curve. In order to construct a local curve `k, where k is a knot index,
we find a product of the basis functions βd,γ and the corresponding coefficients
ζγ . Thus, for a complete set of local curves, we define the blending curve as a
combination of the underlying basis ψk and the set of local curves `k. Alterna-
tively, one can combine the underlying basis functions with the basis functions
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Fig. 3. An example of the polygon grid. Two groups of the polygons having one com-
mon vertex (v2 and v6) are shown in figures (a) and (b), respectively.

of the local curves over each two knot intervals. Then, the final basis functions
with local support look like it is illustrated in Figure 2(c) and are evaluated as

ϕ(k,γ) = βγψk, (6)

where k iterates over the knot intervals and γ iterates over the indices of the
Bernstein polynomials. Let for simplicity the tuple (k, γ) be denoted as the
index i. Then, a set of the combined expo-rational functions is ordered with
respect to i, i = 1, ..., N , where N is the total number of coefficients ζ taken
from the local curves.

2.3 Polygonal blending spline construction

Now, we can directly expand the one-dimensional representation of the combined
expo-rational basis functions to a multivariate form. Let β be a set of the polyg-
onal Bézier basis functions, ψk be one underlying expo-rational basis function
defined on a set of polygons having one common vertex with an index k. Let
also x be a point that belongs to a polygon Pn ⊂ R2 with n vertices.

By analogy with the one dimensional case, two knot intervals, expanded to
a polygon grid, are represented as a set of polygons having one common vertex.
Figure 3 demonstrates an example of the polygon grid. Two groups of polygons
having one common vertex are highlighted, which correspond to the supports of
the underlying expo-rational basis functions ψ2 and ψ6, respectively.

A set of Bézier basis functions of degree d, defined on a polygon Pn with
n ≥ 3 sides, is given as

βγ = βd,a(x) =
d!

a1!a2!...an!
ua11 (x)ua22 (x)...uann (x), x ∈ Pn, (7)
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a) βγ
b) ψ6

Fig. 4. Illustration of the basis functions defined on the grid shown in Figure 3. (a)
A set of the Bézier basis functions of degree one defined on the set of polygons with
a common vertex v6. (b) One underlying expo-rational function ψ6 on its polygonal
support.

a) ϕ(2,γ) b) ϕ(6,γ)

Fig. 5. Some examples of the combined expo-rational basis functions of degree one
defined on the polygon grid shown in Figure 3.

where u1, u2, ..., un is a set of generalized barycentric coordinates for the given
polygon, a = (a1, a2, ..., an), a1 + a2 + ... + an = d, is a multi-index. The func-
tions (7) form a basis of the Bézier polygon [10]. Note that in order to blend the
local Bézier polygonal surfaces, we define them on each set of the grid polygons
having one common vertex, as shown, for example, in Figure 4(a).

The underlying expo-rational basis function in generalized barycentric coor-
dinates is defined on one polygon Pn for any x ∈ Pn as

B(ui(x)) =
B(ui)

B(u1) +B(u2) + ...+B(un)
for i = 1, 2, ..., n, (8)

where B(ui) is evaluated by formula (4). Thus, each B(ui) is defined for each
vertex of the polygonal element such that B(ui(x)) = 1 if x = vi and B(ui(x)) =
0 along edges that do not contain vi. One expo-rational basis function ψk, which
is formed as a “bell” shape, has its support on the neighbor polygons having a
common vertex, and it is formed as the functions B(ui(x)) such that they are
equal to 1 at the vertex vk, and equal to zero along all edges of its support
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(except the domain boundary). This property of the underlying expo-rational
basis functions provides strict locality of the basis, which is especially promising
for the polygonal grids in comparison with other smooth spline representations.
Figure 4(b) shows the underlying basis function ψ6 on its support.

On the polygonal grid the expo-rational basis functions are C0-smooth, in
contrast with tensor product representation of the same basis, where the ba-
sis functions are C∞-smooth [7, 6, 13]. Thus, by blending using local Bernstein
polynomials of degree d we obtain Cd-smoothness of the combined basis on the
polygon grid inside the domain Ω.

Multiplying the underlying expo-rational basis functions ψk and the corre-
sponding local Bézier basis functions βγ over each set of the polygons having a
common vertex vk, we obtain the combined expo-rational basis ϕ by analogy
with the one-dimensional case (6). Figure 5 illustrates some examples of these
basis functions, defined on the polygon grid shown in Figure 3.

A set of the combined expo-rational basis functions forms the basis for con-
structing a polygonal blending surface. It is linearly independent and sums up
to one at any point of the domain.

3 Image approximation

3.1 Partitioning

A natural choice of partitioning of the two dimensional domain into a set of
polygons is the utilization of the Voronoi diagram. In terms of the image rep-
resentation, one can select sampling points randomly, or adaptively to image
properties [16]. The goal of this representation is to approximate the image col-
ors such that one can reconstruct the original image by increasing the number
of samples. In contrast, the purpose of the blending spline approximation is to
achieve a better approximation on the blending phase while keeping the initial
sampling as coarse as possible.

Thus, we propose a sampling technique that is based on the center of masses
of the specific color regions. Let the original image be transformed to a few evenly
spaced gray shades. Then we find a center of mass for each color, and a longest
distance between two points in the current color region. If the farthest distance
is larger than the given parameter, then we subdivide the current region to two
parts by the line which is perpendicular to the line having two farthest points
and goes through the center of mass. This sampling process repeats until the
distance between two farthest points is less than the given parameter. Several
steps of this process are shown in Figure 6(a)-(e). A set of distributed points is
shown on the grayscale image in Figure 6(f).

Once the sampling points are selected we start generating Voronoi cells. An
algorithm that provides clipping of the Voronoi diagram to the domain boundary
and collapses the short edges to obtain more uniform partitioning is based on
the PolyMesher generator [17]. The result of the partitioning process is shown
in Figure 7.
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a) b) c)

d) e) f)

Fig. 6. (a)-(e) Sampling process. (f) Distribution of sampling points.

Fig. 7. Generated grid after removing short edges.

The generated cells are grouped by neighbor polygons having one common
vertex. The local set of the combined expo-rational basis functions is defined on
each of these groups.

3.2 L2-projection

We seek for the one-to-one correspondence between blending surfaces and two
dimensional color images. In order to obtain this correspondence we need to
project an image in the color space onto the space of the combined expo-rational
basis functions.
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Fig. 8. Sparsity pattern of the matrix M .

Let V be the space of all continuous functions spanned by the combined
expo-rational basis ϕi, i = 1, 2, ..., N .

An L2-projection S ∈ V of a function f ∈ L2(Ω) is defined as∫
Ω

(f − S)ϕi dΩ = 0, i = 1, 2, ..., N. (9)

Since S belongs to V it can be written in matrix form as (3). Inserting (3)
to the definition (9) we obtain∫

Ω

(fϕ)T dΩ = ζ

∫
Ω

ϕTϕdΩ.

Introducing the notation M =
∫
Ω

ϕTϕdΩ, b =
∫
Ω

(fϕ)T dΩ, we get the follow-

ing linear system for the unknown vector of coefficients ζ

Mζ = b. (10)

Thus, the coefficients ζ in the expression (3) that satisfy the linear system (10)
give the orthogonal projection of the function f defined on the domain Ω onto
the space of the combined expo-rational basis functions, in our particular case.

Figure 8 illustrates the sparsity pattern of the matrix M on the example of
a grid having 128 polygons and second degree local surfaces.

4 Numerical experiments

The numerical experiments are performed on the following standard images used
in digital image processing: “Lena”, “baboon” and “peppers”, shown in Figure 9.
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a) b) c)

Fig. 9. (a) “Lena”. (b) “baboon”. (c) “peppers”.

a) b) c)

Fig. 10. “Lena”, second degree local surfaces, (a) 24 elements, (b) 32 elements, (c) 128
elements.

The images have size 256 × 256 pixels. These images were selected in order to
exploit the proposed algorithm on a variety of detail, flat and noise regions, and
distribution of colors.

The peak signal to noise ratio (PSNR) is used to measure the approximated

image quality and it is calculated by formula PSNR = 10 log
(

M2
X

||f−S||2X

)
, where

MX is the maximum possible pixel value of the image in the color representation
and ||f −S||2X is the mean squared error of the original image f compared to its
approximation S over the pixels X.

Figures 10-12 show several iterations of the presented method of image ap-
proximation. The chart in Figure 13 demonstrates the method performance.
Although the algorithm does not provide a beneficial PSNR between 30-50 dB
after the first few iterations, it shows a steady trend towards improving image
quality as the number of elements increases. However, we suppose that alter-
native methods can be used to improve the image quality. For example, the
blending splines preserve the derivatives at the interpolation points [7], thus,
one can approximate the image gradient. In the current paper we only intro-
duce the method based on polygonal blending splines, so its variations require
additional development.
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a) b)

Fig. 11. “peppers”, second degree local surfaces, (a) 32 elements, (b) 128 elements.

a) b)

Fig. 12. “baboon”, second degree local surfaces, (a) 64 elements, (b) 128 elements.

5 Concluding remarks

This paper introduces a method for image representation by using the blending
type spline construction evaluated on a polygon grid. We have shown two phases
of image approximation: (i) polygon grid generation with a purpose for further
blending, (ii) orthogonal projection of a colored image onto the space of the com-
bined expo-rational basis functions. Image processing is a particular application
of the proposed method. This approach is originally intended to be utilized in
isogeometric analysis as an extension of the work shown in [12]. However, IGA
methods can also be applied to image approximation and enhancement. If, for
example, we assume that the image is a solution to some partial differential
equation, then the continuous representation of the solution allows us to adjust
inner parameterization such that it improves approximation.

There are several unique properties of the proposed surface construction. The
most promising feature is the evaluation of a Cd-smooth surface on a polygon
grid. Combined with local support of basis functions, this provides an extensive
framework that can be applied to approximation of a wide range of functions
defined on arbitrary polygrid topology.

Several possible applications result directly from the continuous representa-
tion of the image and the features described above. First of all, image approx-
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Fig. 13. Performance chart for the test images in Figures 10-12.

imation is by itself a form of image compression. For a predetermined set of
basis functions, the image can be encoded as a set of approximation coefficients.
An approach that shows the decomposition of an image into a set of logistic
expo-rational basis functions and corresponding coefficients as applied to image
compression is presented in [4]. Next, the continuous representation of an im-
age allows us to increase its resolutions at the expense of finer discretization.
Another possible application of the blending spline approximation of images is
inpainting. One can fill in damaged or missing regions with approximate colors
while preserving derivatives.

The main weakness of the proposed method is its computational cost. How-
ever, the issue is not in the algorithm efficiency itself, but in its optimization.
The construction of the basis functions can potentially be parallelized, but it
requires additional study and development.

Some possible algorithm improvements can be implemented. The first idea
is to change the color space of the image from RGB to, for example, YCbCr or
XYB, which is used in JPEG XL format [1]. The appropriate color space may
depend on the color distribution in the image. Second, the sampling algorithm
can be improved in several ways. For example, one can change the metric from
Euclidean to another one, or develop a non-uniform distribution of sampling
points by using an adaptive maximum distance between the farthest points in
one polygon.



Polygonal blending splines in application to image processing 13

References

1. Alakuijala, J., Ruud van Asseldonk, Boukortt, S., Bruse, M., Comşa, I.-M.,
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