
Multi-Way Dataflow Specifications in Graphical
User Interfaces

Knut Anders Stokke1, Mikhail Barash1, Karl Henrik Elg Barlinn1, Daniel
Berge1, Torjus Schaathun1, and Jaakko Järvi1,2

1 Bergen Language Design Laboratory, University of Bergen, Norway
2 Department of Computing, University of Turku, Finland

1 Introduction

Most of us interact with graphical user interfaces (GUIs) everyday. Still, GUIs
are oftentimes wrong and buggy, almost to the extent that users know to expect
problems; GUIs lack necessary functionality, get user interactions wrong, and
can even end up in states where the user must resort to restart the application.

The low quality of GUIs stems, at least partially, from the way GUIs are pro-
grammed today: programmers write imperative event handlers that are executed
on every user interaction. The code in the event handlers must correctly update
the different variables that comprise the GUI state while taking into account
that other event handlers could be updating the GUI state simultaneously. It is
common for these variables to be dependent on each other, in which case one
gets into a setting of multi-way dataflow. While this setting is often useful to the
user, and even necessary for some features, it is particularly hard to implement: a
user interaction may edit different variables depending on which variables where
previously edited, and event handlers must therefore keep track of the history
of user events.

Consider a GUI application for scheduling talks at a conference. The GUI
shows a list of talks, where each talk (t) has three user-editable variables: a start
time (s), a duration (d), and an end time (e); these variables are related (t.e =

t.s + t.d, t.d = t.e - t.s, t.s = t.e - t.d). A user can update the start
time or duration of a talk and observe that the end time of the talk is updated
accordingly, and that this change propagates through the succeeding talks (the
latter requirement is expressed by equations ti.s = ti-1.e and ti.e = ti+1.s

). However, the GUI enables a user to update the end time of a talk too and
observe that the duration or start time is updated accordingly to maintain the
relation between the variables. Which of the two is updated depends on the
history of actions of the user; when given a choice, the GUI should preserve the
last edited variable(s). Multi-way dataflow constraint systems provide a solution
for this setting. By using the constraint system library HotDrink [1], this example
can be implemented as follows. Each talk will become a component with three
variables as mentioned above, and the five equalities will become the constraints
in the system. Using a planning algorithm, the library will then be able define
the propagation of the data across the dependency graph.



2 Specifications in GUIs

We describe below several directions of extending the HotDrink constraint sys-
tem library.

Managing structural changes. In our running example we find a structure, a list
of talks, where each talk has connections to other talks through the variables
that represent start times and end times. Since there are connections between
elements in the structure, it is hard to manipulate the structure itself. If a GUI
developer wants to insert a talk, remove a talk, or swap two talks, they must also
update the connections between the talks, which is a manual and error-prone
task. Many GUIs today lack basic operations to manipulate lists, and only enable
users to insert and remove elements at the end of the list.

We have designed a framework to specify structures and structural manip-
ulations on them [3]. Such specifications are used to generate functions for the
operations and provide an API to the structure. This separates the concern of
the lower-level details of structure manipulation from code that provides func-
tionality to the user. Having structure specifications in a GUI could also enable
external tools to better analyse the GUI code to provide additional functionality.

Spreadsheet integration. Microsoft Excel is, arguably, the most commonly used
programming language; however, spreadsheet programming proves to be error-
prone [2], and faulty spreadsheets may lead to poor decision making. Inserting,
moving, or removing rows and columns are examples of operations that typically
lead to errors: indeed, such operations must correctly update references and for-
mulas that may range over the entire table. Traditional spreadsheet applications
have no semantic understanding of how the cells relate to each other, and with-
out any formal explanation, references between cells appear to be random. We
have initiated the development of a spreadsheet application that enables the user
to specify structures in a spreadsheet. The specification should enable multi-way
dataflow, which to our knowledge is not possible in industry-leading tools such
as Microsoft Excel or Google Sheets at the time of writing. We expect our tool to
provide operations to make structural changes in the spreadsheet while keeping
the structure and the dependent formulas consistent.

Graphical tool for designing GUIs. We are developing a tool to enable designers
to visually specify constraints between widgets in GUIs. The tool lets designers
select widgets in GUIs and specify relations between them, based on which the
tool generates a constraint specification for a constraint system-based library,
such as HotDrink. We plan to extend the tool to let designers visually define
patterns of repeating components in GUIs, and have our tool generate a speci-
fication of feasible structural manipulations.

Macro recording and scriptable GUIs. Many of the tasks performed in GUIs
are repetitive and tedious. Power users would rather automate these tasks and
spend their time elsewhere. While automating repetitive command-line tasks is



often quick and easy, automating GUIs proves to be hard, time-consuming and
sometimes impossible. Macro recording would enable users to record a sequence
of GUI actions and later replay them over different data; the purpose is to
automate oft-occurring use patterns. We are developing a generic approach for
macro recording where this feature could be packaged to a library, to be reused by
different GUIs. Based on these ideas, one can then generate a tailored scripting
language for a particular GUI that will allow manipulating that GUI’s widgets;
this will enable power users to automate repetitive tasks even to a further extent.

References

1. Gabriel Foust, Jaakko Järvi, and Sean Parent. Generating reactive programs for
graphical user interfaces from multi-way dataflow constraint systems. SIGPLAN
Not., 51(3):121–130, October 2015.

2. Raymond R Panko. What we know about spreadsheet errors. Journal of Organiza-
tional and End User Computing (JOEUC), 10(2):15–21, 1998.

3. Knut Anders Stokke, Mikhail Barash, and Jaakko Järvi. Manipulating GUI struc-
tures declaratively. In Proceedings of the 19th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences, GPCE 2020, page
63–69, New York, NY, USA, 2020. Association for Computing Machinery.


