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ABSTRACT : Prediction of pavement performance is a key process in the efficient 

management of pavement assets for a highway agency. There are a lot of tools that can be 

used to develop pavement performance prediction models, but the newest generation of tools 

belongs to the field of Artificial Intelligence. Rutting prediction models for stone mastic 

asphalt pavements are developed using multiple linear regression (MLR) and Artificial Neural 

Network (ANN) techniques, using data from the Norwegian national road databank (NVDB). 

Comparative study of the results is also conducted. The main conclusion from this study is 

that pavement rutting prediction models using the intelligent ANN technique predict 

pavement condition with a better accuracy than the classical MLR models. 
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1. INTRODUCTION 
 
Pavements deteriorate with time under the combined effects of traffic and environment. To 

keep the condition of pavements at an acceptable level throughout their life span, the future 

performance of pavements should be predicted as accurate as possible. Permanent 

deformation in the form of rutting is one of the most important distress (failure) mechanisms 

in asphalt pavements. With increase in truck tire pressure in recent years, rutting has become 

the dominant mode of flexible pavement failure (Garba, 2002). Until a comprehensive purely 

mechanistic model is developed, which in spite of a great deal of researches, seems unlikely 

in the foreseeable future, the use of empirical or mechanistic – empirical models is very 

pragmatic (Yang, 2004).The best source of data for development of performance prediction 

models would be historical in-service road condition data. This paper presents development of 

rutting prediction models using data from the Norwegian Public Roads Administration’s 

(NPRA) Nasjonal vegdatabank (NVDB). Comparative study of the predicting capability of 

intelligent artificial neural network (ANN) modeling technique versus the classical multiple 

linear regression (MLR) method is also conducted. 
 
2. RUTTING AND POSSIBLE INFLUENCING FACTORS 
 
Pavement deterioration greatly depends on traffic, pavement type, environmental and 

structural capacity factors. The selected variables based on the data available in the NVDB are 

summarized in Figure 1, and described in the sub-sections below.  
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Figure 1:  Adopted variables for the rutting model 

 
2.1. Rutting 
 
Rutting is the transverse depression of pavements along the wheel paths of traffic, Figure 2. In 

cold climates it is caused by two factors, permanent deformation and studded tire wears. 

Studded tire wear contributes significantly to rutting and is, on heavily trafficked roads, the 

most important cause of rehabilitation work (Bertelsen, Uthus, et al., 2005). In the NVDB, 

there is no differentiation between permanent deformation and wear, it is the total rut depth as 

observed on the pavements that is measured and registered. Hence, in order to model rutting 

progression from permanent deformation, a differentiation between the two is necessary.  
 

   
Figure 2: Wheel path rutting (SINTEF web page), rutted pavement cut to show the deformations, and 

typical studded tire wear (Haugødegård, 2008). 

 

Contribution from studded tires 

A number of factors affect the amount of pavement wear from the use of studded winter tires. 

To determine the amount of pavement material which is worn by one passage of a vehicle, a 

term called SPS (specific wear) is defined in Norway and Scandinavia (Bertelsen, Uthus and 

Mork, 2005). It is the wear resistance of the asphalt surface course, and is defined as the 

average wear in grams worn from the surfacing when a passenger car equipped with 4 studded 

tires drives a 1 km distance. It is often more appropriate to specify the amount of worn 

material as volume instead of weight. This volume-based wear is referred to as the SPSV 

value. Typical SPSV values for some pavement types are provided in Table 1. 
 

Table 1: Typical SPSV values for different pavement types (Ellingsen, 2008) 

Pavement type SPSV value 

Stone Mastic Asphalt (SMA) – in Norwegian, Skjelletasfalt (Ska) 2 – 4 
Asphalt Concrete – in Norwegian Asfaltbetong (Ab) 6 – 8 
Asphalt Concrete – in Norwegian Asfaltgrusbetong (Agb) 6 – 12 
 
Heavy vehicles and/or wheels with chains must be converted to a standard studded tire 

vehicle. It is therefore necessary to operate with an effective AADT, AADTeff, to calculate the 

SPS or SPSV value. The SPSV value is computed using the following relation (Bertelsen, 

Uthus and Mork, 2005): 
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where  ΔA      : change in road cross sectional area due to wear in one year 
l : duration of winter season for studded tire usage (days) 
b : percent of the winter season when the pavement is not covered by snow/ice. 

 
In order to compute the AADTeff, it is customary to convert the contribution of each vehicle 

into a standard vehicle. If a heavy vehicle with studs wears α times the standard vehicle, and 

the same heavy vehicle with chains wears β times the amount worn by the standard vehicle, 

then the effective AADT is computed as follows (Bertelsen, Uthus and Mork, 2005): 
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where  %l : percentage of passenger cars 
  %t : percentage of heavy vehicles 
  %pl : percentage of passenger cars with studded tires 
  %pt : percentage of heavy vehicles with studded tires 
  %kt : percentage of heavy vehicles with chains 
  np : number of wheels with studs, heavy vehicles 
  nk : number of wheels with chains, heavy vehicles 

f  : is a factor which accounts for the number of traffic lanes. 
 
If ΔA is measured for a two-lane road over both lanes, f = 1, while f = 0.5 for a two-lane road 

with equal traffic in both directions if ΔA from only one lane is included in the calculation. 

Data from annual traffic survey reports on the Norwegian road network 

(Tilstandsundersøkelser) (Muskaug, Nygaard, et al., 2003) is used for the calculations. Once 

the contribution from studded tire wear to the total rutting is determined, the rutting from 

permanent deformation in the pavement is computed by subtracting this from the total 

measured rut depth. 
 
2.2. Pavement Age 
 
It is a fact that pavements deteriorate with time. Hence, pavement age is considered in the 

developed model, computed from the day the road was opened to traffic after the recent major 

rehabilitation/overlay construction (maintenance date). 
 
2.3. Pavement layer thicknesses 
 
Pavement layers and their thicknesses play a very important role in distributing wheel loads to 

underlying subgrade. Thicker pavement structure would mean less stress to the subgrade, and 

subsequently less distress. In addition, variation in layer thickness can also result in variations 

in the structural characteristics and in-service performance of pavements (Attoh-Okine and 

Roddis, 1994). The selected roads are originally constructed many decades ago, and in their 

life time they have received a number of maintenance and rehabilitation works. As a result, 

these in-service pavements have a number of asphalt layers from each 

maintenance/rehabilitation activity over the years. These layers differ in material type, 

thickness and condition, having also different strength (stiffness). For a better comparison of 

the performance of the different pavement structures, equivalent thicknesses have been 

computed and used in the models. The NPRA conducted a research project “Better utilization 

of the bearing capacity of roads” in the period between 1990 and 1994 (Vegdirektoratet, 

1994). In this project, properties of the different in-situ asphalt layers (including stiffness 

values) have been investigated and a database of material description and modulus values was 



established. These modulus values are used for the equivalent thickness computation. Using 

the assumptions of Odemark’s equivalent thickness method (Ullidtz, 1998), the different 

asphalt layer thicknesses are converted to an equivalent thickness with respect to the modulus 

of the top layer as follows.  
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where: heq – the equivalent thickness of layer 2 with respect to the modulus of layer 1. 
h2     – thickness of layer 2 
E2   – modulus of layer 2 
E1   – modulus of layer 1  

 
2.4. Traffic load 
 
Traffic loading is an important variable in predictions models. The traffic data from NVDB is 

the Annual Average Daily Traffic (AADT), and this is converted to Number of Equivalent 10 

ton Axle Loads (N10), which is a common parameter used in the Norwegian Pavement 

Design standard (Vegdirektoratet, 2011). There, it is assumed that a heavy axle P (tons) has a 

damaging effect (equivalency factor E) in relation to a 10 ton axle which is proportional to the 

fourth power of the axel load ratio as follows:  
4  ( /10)E P  

The number of equivalent 10 ton axle loads which load the pavement for a certain period (in 

days) can be calculated from the actual number of heavy vehicles using the following 

equation: 

10N f AADTT days C E      

where 
N10 : number of equivalent 10 ton axle loads 
f : a factor dependent on the number of lanes (f = 1 for one lane, f = 0.5 for two-lane 

and f = 0.4 for four-lane roads ) 
AADTT : Average Annual Daily Truck Traffic (heavy vehicles with allowed total gross 

weight 3.5 tons or more) 
days : The number of days in the period the N10 is computed 
C : Average number of axles of heavy vehicles (C =2,4 (Vegdirektoratet, 2011) ) 
Ē : Average equivalency factor for heavy vehicle axles – it depends on the axel load 

distribution, which again is supposed to depend on the allowed axle load of the 
road (Ē = 0.207 for 8 tons, and Ē = 0.424 for 10 tons axle load limit). 

 
2.5. Precipitation (mm) and Maximum Temperature (°C) 
 
In addition to traffic loading, environmental conditions do also greatly influence pavement 

performance. Environmental data used in the models are precipitation and max temperature. 
 
3. MODEL DEVELOPMENT 
 
Representative roads from the Norwegian pan-European road network (Europaveg) in 

different geographical locations in Norway are selected. The rationales behind the selection of 

the roads are 1) roads which represent different geographical and climatic locations of the 

country, and 2) highly trafficked roads (especially near and through major cities) are avoided 

because they usually are maintained rather frequently, hence condition data for longer period 

on one particular pavement (without maintenance or rehabilitation) are usually not available. 

A map showing the selected roads is provided in Figure 3.  



 
Figure 3: Map of Norway showing the selected roads 

 
Development of pavement rutting greatly depends on the type of asphalt mix (pavement type) 

used. In Norway there are different types of asphalt mixes used depending on traffic amount, 

pavement condition (desired properties), cost, availability of materials and other local 

conditions (Vegdirektoratet, 2011). This paper presents the results for the stone mastic asphalt 

pavements (Skjelletasfalt, Ska), which again is categorized as Ska11 and Ska16 depending on 

the maximum aggregate size used in the mixture (11 and 16 mm respectively). After extensive 

and rigorous data processing, the data set is now ready for modeling. Scatter plot of the data is 

shown in Figure 4 and Figure 5. 
 

 
Figure 4: Scatter plot of the dataset for PavtType = Ska11 

 

 
Figure 5: Scatter plot of the dataset for PavtType = Ska16 

 
3.1. Multiple Linear Regression Models 
 
The classical Multi - Linear Regression (MLR) is used to model the value of the dependent 

variable, the rut depth, based on its linear relationship with multiple predictors like pavement 



age, pavement layer thicknesses, traffic levels and environmental factors. In order to compare 

the results with that of the ANN models, a random selection of 70% of the datasets is used for 

the model development. 

 

The results from the MLR analyses are shown in Table 2 and 3. Table 2 shows the 

coefficients (or parameters) of the best regression models and model summary. There, the 

N10 and MaxTemp variables are excluded from the Ska16 model, as they did not satisfy the 

selection criteria (stepwise method of variable selection). Observation of the signs of the 

coefficients reveals that rutting is higher on older pavements, highly trafficked roads, on 

pavements exposed to higher temperatures and is slightly higher in rainy areas (wet subgrade) 

than dry ones. Meanwhile, there is less rutting on thicker pavements. This is in perfect match 

with the expectations. The regression and residual sums of squares and the R
2
, the coefficient 

of determination, show that the variation in rutting is explained 57.8% and 62.2%. 

 
Table 2 MLR Model Coefficients and summary 

Coefficients 

 Ska11 Ska16 

Variable Coefficient Coefficient 

Constant 2.201 5.886 

Pavement age .357 .458 

Precipitation .017 .018 

MaxTemperature .228 -- 

Equivalent thickness -.228 -.199 

Base thickness -.089 -.046 

N10 .002 -- 

R .760 .789 

R2  .578 .622 

 

 

Table 3: ANOVA 

Pavement 

Type 
 

Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Ska11 

Regression 98235.443 6 16372.574 3056.314 .000 

Residual 71810.136 13405 5.357   

Total 170045.580 13411    

Ska16 

Regression 31799.922 4 7949.981 2143.965 .000 

Residual 19311.648 5208 3.708   

Total 51111.570 5212    

 
 
 
 
 

3.2. Artificial Neural Network models 
 
An ANN is a layered network of simple processing elements called artificial neurons which 

exchange information via directed connections. It is a subset of artificial intelligence (which 

tries to simulate the biological neural network or the human brain), and it learns from 

experience or collected data. ANNs are recently becoming the preferred tool for many 

predictive applications because of their power, flexibility and ease of use. They are 

particularly useful in applications where the underlying process is complex, like in pavement 

deterioration. 

 

ANN modeling using the backpropagation algorithm is used. IBM SPSS Neural Network 

software is used in this research. Here the active dataset has been partitioned into training, 

testing, and validation (holdout) datasets (i.e. 70% for training, 20% for testing and 10% for 

validation). SPSS supports two types of activation functions in the hidden layer neurons and 

three in the output layer neurons (SPSS, 2007). Every possible combination of activation 

functions between hidden and output layer neurons were tested (Taddesse, 2010). The 

combination of hyperbolic tangent function for hidden layer neurons and the sigmoid function 

for the output layer neuron gave the least amount of errors and the best goodness-of-fit. 

 

For determining the optimum number of units in the hidden layer, a trial-and-error procedure 

was adopted, whereby the Neural Network training program was run by varying the number 

of units in the hidden layer, and the performance of the models was assessed using error and 



goodness-of-fit criteria. Details of the selected optimum ANN architecture and model 

summary are provided in Table 4 and Table 5.  
 

The R
2
 values between the actual and model predicted rut depth values given in the model 

summary table (Table 5) show that up to 78% of the variation in pavement rutting is 

explained by the ANN models. This is quite satisfactory considering that the data source is 

routinely collected field data, and the high uncertainty usually associated with pavement 

deterioration process. From the ANN training and testing, synaptic weight (or ANN parameter 

estimate) matrices are derived. They represent the knowledge abstracted from the dataset, 

which can be programmed for application of the models. 
 
Table 4 Optimum ANN architecture information 

 Ska11 Ska16 

Input Layer 

Covariates 

N10 PavementAge 

Basethick N10 

Equithick MaxTemp 

PavementAge Equithick 

MaxTemp MaxTemp 

Precip Precip 

Number of Unitsa 6 6 

Rescaling Method for Covariates Standardized Standardized 

Hidden 

Layer(s) 

Number of Hidden Layers 1 1 

No. of Units in Hidden Layer 1a 13 10 

Activation Function Hyperbolic tangent Hyperbolic tangent 

Output Layer 

Dependent Variable Rut depth Rut depth 

Rescaling Method for Dependents Normalized Normalized 

Activation Function Sigmoid Sigmoid 

Error Function Sum of Squares Sum of Squares 

Architecture topology 6-13-1 6-10-1 

a. Excluding the bias unit 

 
Table 5 Model Summary 

 Ska11 Ska16 

Training 
Sum of Squares Error 15.943 14.944 

Relative Error .217 .259 

Testing 
Sum of Squares Error 4.667  4.585 

Relative Error .220 .295 

Holdout Relative Error .239 .279 

Goodness-of-fit (R2) 0.783a 0.741a 

a. Goodness-of-fit computations are based on the training dataset. 

 
4. MODEL EVALUATION 
 
Predictive models are often evaluated by testing their prediction accuracy using a part of the 

dataset that is not used in their development, which is called out-of-sample dataset.  
 

4.1. Validation of the MLR models 

As mentioned in section 3.2, 70% of the dataset was used for the model development, in order 

to compare the results with the ANN models. Like for the ANN models, the MLR models are 



validated with a 10% out-of-sample datasets, whereby rut depth predictions using these 

datasets are compared with the actual values. The results of this task are depicted in Table 6, 

and Figure 6 and Figure 7. The coefficient of determination or R
2
 values between the actual 

and predicted rut depths (using the validation dataset) are between 54.1% and 59.5%. 

Comparing the results from the validation dataset with the results from the training dataset 

(Table 6), the performance of the MLR models in predicting rut depth using the 10% out-of-

sample dataset is satisfactory, with relative change in R
2
 values of 6% and 4%. 

 

Table 6: Comparison of results of the training and validation of MLR models 

Pavement 

Type 

MLR 

R
2
 RMSE MAPE 

TRA VAL RC TRA VAL RC TRA VAL RC 

Ska11 0.578 0.541 -6% 2.313 2.473 7% 23.7% 24.3% 3% 

Ska16 0.622 0.595 -4% 1.925 2.086 8% 23.5% 22.9% -2% 

TRA – Training dataset        VAL – Validation dataset                 RC  –  Relative change   

RMSE – root mean square error     MAPE - mean absolute percentage error 
 

Figure 6: Actual versus predicted rut depth using 

validation dataset by MLR –Ska11  

Figure 7: Actual versus predicted rut depth using 

validation dataset by MLR –Ska16 

 

4.2. Validation of the ANN models 

For validation of the ANN models 10% of the dataset was set aside during the training and 

testing phases (refer section 3.2). Predictions of rut depths are carried out using this dataset, 

the results of which are depicted in Table 7, and Figure 8 and Figure 9. The R
2
 values are 

76.1% and 72.1%. Comparing the results from the validation dataset with the results from the 

training dataset (Table 7), the performance of the ANN models in predicting rut depth using 

the 10% out-of-sample dataset is satisfactory, with relative change in R
2
 values being 3%. 

 
Table 7: Comparison of results of the training and validation of ANN models 

Pavement 

Type 

ANN 

R
2
 RMSE MAPE 

TRA VAL RC TRA VAL RC TRA VAL RC 

Ska11 0.783 0.761 -3% 1.659 1.785 8% 15.2% 15.6% 3% 

Ska16 0.741 0.721 -3% 1.593 1.732 9% 18.0% 18.1% 1% 

 



                          

Figure 8: Actual versus predicted rut depth using 

validation dataset by ANN-Ska11 

Figure 9: Actual versus predicted rut depth using 

validation dataset by ANN-Ska16 

 
5. Comparison of MLR and ANN models 
Figure 10 and Figure 11 show scatter plots of actual versus predicted rut depth values using 

MLR and ANN models for the Ska11and Ska16 pavements respectively. The R
2
, RMSE and 

MAPE values using the training datasets are summarized in Table 8, together with the relative 

difference in performance prediction capability between the models from the two methods. 

Evidently, the ANN models have produced results that are better than those from MLR (with 

a relative increase in R
2
 values from the ANN models of 35% and 19%). With regard to the 

error parameters, the ANN models have also produced considerable decrease in RMSE and 

MAPE values (with a relative decrease in RMSE of up to 28% and in MAPE values up to 

36%). This comparative study with respect to prediction ability clearly reveals that the ANN 

models predict the rut depth with greater accuracy than MLR models do. 
 
Table 8: Comparison of the prediction ability of MLR and ANN models - training dataset. 

Pavement 

Type 

MLR ANN Relative change 

R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE 

Ska11 0.578 2.313 23.7% 0.783 1.659 15.2% 35% -28% -36% 

Ska16 0.622 1.925 23.5% 0.741 1.593 18.0% 19% -17% -23% 

              
Figure 10: Scatterplots of actual versus predicted rut depth using training dataset by MLR and by ANN, 

Ska11 
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Figure 11: Scatterplots of actual versus predicted rut depth using training dataset by MLR and by ANN, 

Ska16 

 
6. CONCLUSION 
 
Using the Norwegian national road databank (NVDB), rut depth prediction models for to 

stone mastic asphalt mixture types (Ska11 and Ska16) using MLR and ANN modeling 

techniques are developed. An important goal was to use the intelligent artificial neural 

network modeling technique and check its predicting capability versus multiple linear 

regression method. The following important conclusion can be drawn: 1) pavement condition 

data routinely collected from in-service roads is a good source of data for development of 

pavement performance prediction models, and 2) the use of the innovative modeling 

technique of ANN has shown to improve the prediction capability. A slight improvement in 

the accuracy of modeling is important because it results in a large economic effect. 
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