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ABSTRACT: As mechanistic-empirical pavement design comes to the forefront of design, 

the accurate characterization of asphalt concrete (AC) through dynamic modulus (|E*|) 

becomes increasingly more important. |E*| captures the viscoelastic nature of AC and is 

essential to the accurate prediction of pavement responses under varying speed and 

temperature conditions.  Due to the expensive and specialized equipment needed to measure 

|E*|, predictive models have gained popularity. However, variability in the predictive 

capabilities of these models from study to study indicates that they may not be applicable on a 

global level.  Thus, the use of artificial neural networks (ANN) to predict |E*| was 

investigated for mixtures placed at the 2006 National Center for Asphalt (NCAT) Test Track.  

Comparisons were drawn with the most commonly used predictive models such that an ANN 

was created with inputs identical to each predictive model: Witczak 1-37A, Witczak 1-40D 

and Hirsch. The ANNs created for comparison with the predictive models predicted measured 

|E*| with great success; coefficients of determination (R
2
)
 
ranged between 0.96 and 0.99, a 

notable improvement over the prediction capabilities of the predictive models.  A correlation 

analysis was completed on a variety of input parameters to create an optimal ANN for the 

2006 Test Track mixtures. An optimal ANN was created for the 2006 Test Track mixtures 

using only two inputs, effective binder content (Vbe) and the product of dynamic shear 

modulus of the binder (|G*|) and the sine of the associated phase angle (). This investigation 

also tested the prediction capability of the newly developed ANN on an independent dataset 

by applying the ANN to the mixtures used in the 2009 Test Track cycle. 
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1 INTRODUCTION 

The advent of mechanistic-empirical (M-E) pavement design facilitates the need to accurately 

characterize the modulus of asphalt concrete (AC).  Typically M-E design frameworks 

characterize AC modulus through the use of dynamic modulus (|E*|). |E*| is measured in the 

laboratory at varying frequencies and temperatures which captures the viscoelastic nature of 

AC. This is essential in accurately predicting pavement responses under varying speed and 

temperature conditions.  

|E*| can be measured in the laboratory through AASHTO TP 79-09, the update to the 

AASHTO TP 62-07 method.  However, to complete these testing protocols requires either 

access to or the purchase of expensive equipment and specially-trained technicians. The 

alternative to measuring |E*| in the laboratory is to estimate it through the use of predictive 

models. The onset of M-E design frameworks which necessitate the determination of dynamic 



 

modulus coupled with expensive laboratory testing, have helped predictive models gain 

popularity. The soon to be widely-adopted M-E design framework, the mechanistic-empirical 

design guide (MEPDG) version 1.1 (now called Pavement ME Design), requires that the user 

either input laboratory measured |E*| results at a broad range of frequencies and temperatures 

or select one of two embedded |E*| predictive models. These models are the Witczak 1-37A 

and Witczak 1-40D, developed in 1999 and 2006 respectively (Andrei et al. 1999, Bari and 

Witczak 2006). The former is a viscosity-based model, while the latter updates the Witczak 1-

37A by characterizing the binder by dynamic shear modulus (|G*|) rather than viscosity. 

Aside from the Witczak models, another commonly used model is the Hirsch model, 

developed by Christensen, Pellinen and Bonaquist (2003).  

Numerous studies have evaluated the accuracy of these predictive models.  Results have 

varied from study to study (Christensen et al. 2003, Dongre et al. 2005, Birgisson et al. 2005, 

Mohammad et al. 2007, Ping and Xiao 2007, Robbins and Timm 2011), indicating that these 

models are inconsistent in predicting |E*| on a global level.  For instance, one study (Dongre 

et al. 2005) reports results for the Witczak 1-37A ranging from a coefficient of determination 

(R
2
) of 0.52 to 0.98, depending on the site and aging condition of the binder.  Other studies 

show a smaller range for the performance of the Witczak 1-37A, 0.73-0.84, also dependent on 

binder aging conditions (Birgisson et al. 2005).  As a result, researchers have turned to 

artificial neural networks (ANNs), to predict |E*|.  ANNs do not require knowledge of the 

form of the relationships between input parameters and the target (|E*|).  This is advantageous 

when applied to AC, a viscoelastic material that can be difficult to model due to the numerous 

influencing and interacting parameters (Sakhaei Far et al., 2009). A commonly noted pitfall 

of an ANN, however, is that the capability of the network is limited by the values used to 

train the network. This is also the case with models based in statistical regression. One way to 

prevent this is to train the network with a large and robust dataset, although building such a 

database can be difficult, the training of the network is a relatively simple task. 

A previous study conducted at the National Center for Asphalt Technology (NCAT) Test 

Track evaluated the accuracy of these three predictive models in predicting laboratory |E*| 

(Robbins and Timm 2011) for mixtures placed during the 2006 research cycle. Of the three 

models evaluated, the Hirsch model performed the best, with the model accounting for 88% 

of the variability in the measured data. A local calibration was performed on the Hirsch 

model with negligible improvement noted. Given that M-E design hinges on accurate 

characterization of AC, it is necessary to evaluate the use of ANNs to predict |E*| relative to 

these current predictive models for the same NCAT Test Track mixtures. 

1.1 Objectives 

The primary objective of this study was to assess the use of artificial neural networks to 

predict dynamic modulus for the mixtures of the NCAT Test Track 2006 research cycle.  To 

do so, the following secondary objectives were established: 

1. Compare predictions from |E*| predictive models with an ANN corresponding to the same 

inputs required for each predictive model. 

2. Assess the possible input parameters and develop an ANN to optimize |E*| predictions for 

the 2006 Test Track mixtures. 

3. Evaluate the developed ANN on |E*| results for mixtures in the 2009 Test Track. 

2 SCOPE 

Results from a previous study (Robbins and Timm 2011) on the adequacy of these three 

predictive models for the 2006 Test Track mixtures were utilized for comparison with ANNs.  



 

A correlation analysis was completed in Microsoft Excel to assist in the selection of input 

parameters to create an ANN for optimal prediction of |E*| for Test Track mixtures. An ANN 

was created for comparison with each predictive model using Matlab, version 7.10.0.499.   

3 METHODOLOGY 

3.1 Laboratory Testing 

Dynamic modulus testing was completed for the 2006 Test Track mixtures following the 

AASHTO TP 62-07 using an Asphalt Mixture Performance Tester (AMPT).  Testing was 

conducted at only three temperatures, 4, 21, 37.8°C rather than the recommended 5 outlined 

in AASHTO TP 62-07 due to difficulties in obtaining reliable and reasonable results at the 

extreme temperatures. For each temperature, seven frequencies, 0.5, 1, 2, 5, 10, 20, and 25 Hz 

were applied.  Specimens consisted of plant-produced mixtures compacted in the laboratory 

using a Superpave gyratory compactor. Dynamic modulus was determined for the mixtures 

placed during the 2009 Test Track cycle in accordance with the AASHTO TP 79-09 

procedure on plant produced, lab compacted specimens.  

Viscosity testing was conducted on rolling thin film oven test (RTFOT)-aged binders using 

the Brookfield rotational viscometer following AASHTO D4402-06 at 135 and 165ºC.  

Dynamic shear modulus, |G*|, testing, in accordance with AASHTO T 315-06, was also 

conducted on RTFOT-aged binders using a Dynamic Shear Rheometer (DSR).  For the 2006 

Test Track mixtures a frequency sweep ranging from 0.1 Hz to 25 Hz was applied at each of 

the four test temperatures: 4, 21, 37.8, and 54.4ºC.  Following the same procedure, |G*| was 

measured for the binders of the 2009 Test Track at a range of temperatures, 21-54.4°C, and a 

range of frequencies,  0.01-25 Hz. 

3.2 Predictive Models 

As mentioned earlier, a previous study evaluated the use of three predictive models for 

estimating the |E*| for the 2006 Test Track mixtures. A more complete discussion on the use 

of these models to predict |E*| for the 2006 mixture is documented elsewhere (Robbins and 

Timm 2011). The Witczak 1-37A model is a sigmoidal fit function that combines 

rudimentary volumetric and gradation properties with binder viscosity and frequency to 

estimate |E*| for a given frequency and temperature. The model, as presented in the MEPDG 

Part 2, Chapter 2 Appendix (ARA 2004), uses four rudimentary gradation parameters, two 

volumetric parameters and viscosity and frequency to predict |E*|.  

The Witczak 1-40D model is a modified version of its predecessor, the 1-37A model. 

Additional mixtures expanded the dataset and viscosity and frequency were replaced with 

dynamic shear modulus and its associated phase angle as displayed in (Bari and Witczak 

2006). It should be noted that the frequency at which dynamic shear modulus is tested, is not 

equivalent to frequency in the compression mode as used for |E*| testing, rather, the 

frequency in shear mode is equivalent to the frequency in compression mode divided by the 

product of two and pi.  

The Hirsch model applies the law of mixtures for composite material to AC by considering 

it as a three-phase system of aggregate, asphalt binder and air voids as shown in (Christensen 

et al. 2003).  Only three inputs are required: |G*| of the binder, voids in mineral aggregate 

(VMA) and voids filled with asphalt (VFA). It should be noted that equivalent definitions of 

frequency between compression (dynamic modulus of the mix) and shear mode (dynamic 

shear modulus of the binder) are used.  

 



 

3.3 2006 Test Track Mixtures 

Mixtures placed at the NCAT Test Track during the 2006 test cycle were utilized for this 

investigation.  These mixtures are representative of general use mixtures typically placed in 

the southeastern U.S.  Mixtures chosen for this study had |E*| testing completed at 1, 10, 25 

Hz and 4, 21, 37.8°C.  To meet the requirements of the Witczak 1-40D model, these mixtures 

also had |G*| testing completed at 0.159, 1.59 and 3.979 Hz.  Likewise, for the Hirsch model, 

the mixtures selected also had to have |G*| completed at 1, 10, and 25 Hz.  The resulting 

dataset included 18 different mixtures representing 6 mix types.  A total of 12 binders were 

included, representing five different types: PG 64-22, PG 67-22, PG 70-22 modified with 

Styrene Butadiene Styrene (SBS), PG 76-22 with SBS, and PG 76-28 with SBS.  The 

resulting dataset remained robust, including unmodified and SBS modified mixtures, as well 

as two different Superpave mixtures with reclaimed asphalt pavement (RAP) and one stone 

matrix asphalt mixture (SMA).  Two of the mixtures, included a 75 blow Marshall Mix 

designed with RAP and a dense graded granite mix designed at 50 gyrations.  The ranges for 

nominal maximum aggregate size (NMAS), air voids, VFA and test temperatures fell within 

the ranges used for the Hirsch model development although the minimum VMA was slightly 

lower than the minimum reported in the Hirsch model development (Christensen et al. 2003). 

3.4 Artificial Neural Network 

An ANN was created for comparison with each predictive model, such that “ANN_37A” 

utilized the same inputs as the Witczak 1-37A predictive model, and likewise the complement 

to the Witczak 1-40D model was “ANN_1-40D” and the Hirsch was complemented by 

“ANN_Hirsch.”  Matlab was employed to create feed-forward back propagation networks 

based on supervised learning.  For each ANN, two hidden layers were used.  Although the 

number of neurons was consistent between hidden layers, the number of neurons used for 

each ANN varied, depending on the number of inputs and the performance of each network.  

A common transfer function, tan-sigmoidal, was used as well as a linear output transfer 

function.  Given the size of the dataset (537 data points), 90% of the data was used for 

training and 5% each was used for validation and testing, selected at random.   

Due to the wide range of target values (measured |E*|), and the variable ranges of the input 

values, it was necessary to normalize both the input and output data following Equation 1. By 

doing so, all input parameters and output values ranged between -1 and +1. It should be noted 

that the target value was normalized measured |E*|, rather than log |E*| as predicted by the 

Witczak 1-37A and 1-40D models.  

 

   
 (      )
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The number of neurons in the hidden layers was varied until the mean squared error of the 

network was minimized and a high coefficient of determination, R
2
, was reached for all 

levels: training, validation, and testing.  Additionally, the ratio of standard error of the 

predictions, Se, to standard deviation of the measured values, Sy, was used to assess the 

quality of the ANN.  Typically, low values, less than 0.35, are considered excellent. Each 

network was trained 3-5 times before altering the number of neurons. In optimizing an ANN 

for the 2006 Test Track mixes, a correlation analysis was completed using Pearson’s product 



 

moment correlation coefficient, r, on the available parameters to help select a minimum 

number of critical inputs to predict |E*|. 

3.5 2009 Test Track Mixtures 

The |E*| measurements determined in the laboratory for mixtures placed at the Test Track 

during the 2009 test cycle were used to evaluate the ANN created from |E*| measurements for 

the 2006 mixtures. A total of 24 different mixtures were included in the evaluation of the 

developed ANN. These mixtures utilized 23 different binders, including unmodified 

Performance Grade (PG) 67-22, PG 76-22 modified with SBS, PG 76-22 modified with 

ground tire rubber (GTR), PG 67-28 modified with pellets from Trinidad Lake Asphalt (TLA) 

and binders modified with 7.5% SBS. The mixtures included 50% RAP, 50% RAP produced 

with foaming technology, warm mix asphalt (WMA) produced with foaming technology, 

WMA produced with additives, 45% RAP, a variety of Superpave mixes and fine and coarse 

graded mixtures. Due to the advancement in the AASHTO testing protocol for |E*|, these 

mixtures were tested at three temperatures with the high temperature determined by the PG of 

the binder: 4, 20 and 40 or 45°C. At each temperature, testing was conducted at 0.1, 1, and 10 

Hz with an additional frequency of 0.01 Hz at the high temperature. The CAM model 

(Marasteanu and Anderson 1999) using the WLF shift factor (after Ferry 1980) were applied 

to the |G*| data to create a master curve for each binder. From that master curve, the |G*| at 

the same frequency and temperature as |E*| were selected for the evaluation.  

4 RESULTS AND DISCUSSION 

The results of a previous study applying these models to the same 2006 Test Track mixtures 

found large scatter in the Witczak 1-37A model, over-prediction by the Witczak 1-40D model 

and reasonable fit with the Hirsch model (Robbins and Timm 2011).  Given these results and 

the success found by other researchers with artificial neural networks (Lacroix et al. 2008, 

Sakhaei Far et al. 2009, Ceylan et al. 2010), artificial neural networks were created for the 

2006 Test Track mixtures. An ANN was created using the same inputs as required by each of 

the three predictive models.  Each ANN was then compared directly with results from each 

predictive model, at three temperatures, 4, 21, 37.8°C and three frequencies (1, 10 and 25 

Hz).  

In comparing the Witczak 1-37A model, an ANN was created with 30 neurons and two 

hidden layers. It is speculated that a large number of neurons was required due to the large 

number of inputs (8) relative to the number of datapoints (537).  Figure 1 illustrates that the 

30-neuron ANN significantly reduced the scatter previously reported for the Witczak 1-37A 

model (Robbins and Timm 2011) and generally follows the line of equality. Although there 

are some apparent discrepancies in the ANN, it generally performed much better than the 

Witczak 1-37A model, with an R
2
 of 0.96, a marked improvement over 0.60, as reported in 

Table 1.  Likewise, improvements were seen in the slope of the overall trend line, bringing it 

closer to one and the Se/Sy ratio went from fair to excellent with the application of the ANN.  

 



 

 
 

Figure 1: Comparison of Witczak 1-37A model and corresponding ANN. 

 

Shown in Figure 2, the Witczak 1-40D did not perform as well as the Witczak 1-37A model, 

confirmed by the negative R
2
 presented in Table 1.  The negative R

2
 value indicates that the 

errors in the prediction are significantly higher than the errors about the average measured 

|E*|. This is evident by a sum of squared error (SSE) that is greater than the total sum of 

squares (SST), shown in Table 1. The 10 neuron-ANN created for comparison has much less 

scatter than the Witczak 1-40D model and generally follows the line of equality, illustrated by 

a slope of nearly one when a linear trend line is applied and forced through the origin.  Shown 

in Table 1, the ANN developed for the 1-40D inputs performed the best of all three created, 

resulting in the highest R
2
, lowest Se/Sy and slope closest to one; it also showed the largest 

improvement over its corresponding predictive model.   

 

 
Figure 2: Comparison of Witczak 1-40D model and corresponding ANN. 

 

Figure 3 shows the results of the Hirsch model and associated ANN.  It is interesting to note 

from Table 1, that among the three predictive models the Hirsch model performed the best, 

with an R
2
 of 0.88 and Se/Sy of 0.35.  In Figure 3 there are obvious horizontal trends in the 

Hirsch model that are distinguishable by temperature.  When an 8-neuron ANN was created 

using the same three inputs (VMA, VFA and |G*|), the horizontal trends were resolved. 

Similar to the Witczak models, the scatter associated with this ANN is also greatest at low 

moduli values. Testing variability may account for some of the scatter.  
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Figure 3: Comparison of Hirsch model and corresponding ANN. 

 

Table 1: Summary of model statistics (in arithmetic scale) 

 

Statistic 

Witczak  

1-37A 

ANN_1-

37A 

Witczak  

1-40D 

ANN_1-

40D Hirsch ANN_Hirsch 

SSE 7.635x10
13

 7.485x10
12

 3.073x10
14

 1.999x10
12

 2.528x10
13

 5.129x10
12

 

SST 2.106x10
14

 2.106x10
14

 2.106x10
14

 2.106x10
14

 2.106x10
14

 2.106x10
14

 

R
2
 0.6375 0.9645 -0.4587 0.9905 0.8800 0.9756 

Se/Sy 0.6021 0.1885 1.2078 0.0974 0.3464 0.1560 

Slope for 

linear  

trend line 0.9229 0.9877 1.6075 0.9980 0.9297 0.9926 

 

The ANN that performed the best, “ANN_1-40D”, utilized eight different parameters, half of 

which were gradation parameters. Although this ANN returned a very high R
2
 and low Se/Sy, 

it is warranted to evaluate if all of these eight parameters are necessary to achieve a high 

performing ANN using the same data.  From the perspective of an agency, a means of 

accurately predicting |E*| that uses the fewest, relatively easily obtained, input parameters 

could be of great benefit.  Therefore a correlation analysis was completed on possible input 

parameters. These input parameters included binder properties: |G*|, binder phase angle (), 

|G*|sin(), |G*|cos(), |G*|/sin(), G*|/cos(), viscosity, and the high and low temperatures of 

the performance grade (PG). Volumetric properties that were included were: VMA, VFA, air 

voids (Va), and effective binder content by volume (Vbe). Gradation properties required for 

the Witczak models (percent passing the #200 sieve (200), cumulative percent retained on the 

¾” sieve (34), the 3/8” sieve (38), and on the #4 sieve (4)) were also considered. Lastly, 

bulk specific gravity of the aggregate (Gsb), maximum specific gravity of the mix (Gmm), bulk 

specific gravity of the mix (Gmb), percent of binder by weight of mix (Pb) and |E*| testing 

temperature and frequency were also considered.  

The parameters with the strongest correlations to measured |E*| were testing temperature 

and binder properties, specifically |G*|, , |G*|sin(), |G*|cos(), |G*|/sin() and |G*|/cos().  

All had correlation coefficients with an absolute value greater than 0.8.  Viscosity was also 

found to have a moderate relationship with |E*|, resulting in a correlation coefficient of 0.48.  

From this it appears that |E*| predictions are mostly driven by the binder properties, as these 

are also a function of temperature. This is to be expected as it is often postulated that stiffer 

binders would contribute to stiffer mixes. This notion has been supported by findings from 
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(Huang et al. 2008) that showed an increase in |E*| with higher performance graded binder for 

certain aggregate types.  

To optimize an ANN for these mixtures, parameters with the strongest correlations to 

measured |E*| should be selected. However, the parameters selected should be independent of 

each other.  |G*| and  had the strongest correlation to |E*|, but because |G*| and  were 

strongly correlated to one another, |G*|sin() was selected, given that it had the next highest 

correlation coefficient behind testing temperature.  Testing temperature and |G*|sin() were 

very strongly correlated, to no surprise, since |G*|sin() is a function of temperature, 

therefore, temperature was left out of the neural network. Although viscosity had a moderate 

correlation with |E*| and |G*|sin(), it was not included because it is also a binder property, 

and increasing the representation of binder by two-fold would likely introduce un-due bias to 

the network.  Of the remaining parameters, VMA, VFA, and Vbe had the next highest 

correlations with |E*|.  However, there is a relatively strong relationship between VMA and 

VFA (r = 0.69). For this reason and that Vbe was relatively independent (r = 0.09) of 

|G*|sin(), Vbe was selected. It was found that 3/4 and 3/8 were strongly correlated with Vbe, 

indicating that Vbe is driven by gradation parameters. This follows logic in that Vbe is 

essentially an optimized binder content derived from gradation in Superpave mix design. As a 

result an ANN with two hidden layers using 8 neurons was created using only two 

parameters, |G*|sin( and Vbe, to predict |E*| of the 2006 NCAT Test Track mixtures. The 

results of this ANN (ANN_2006) are shown in Figure 4. The resulting statistics shown in 

Figure 4 indicate that this network does not predict |E*| quite as well as any of the three 

previous networks, however, it still performs very well, accounting for over 96% of the 

variability in the dataset.  

 

  
 

Figure 4:  Evaluation of ANN created for 2006 Test Track mixtures.  

 

The Vbe and |G*|sin( for each mixture at the same frequency and temperature that |E*| 

testing was conducted (in accordance with AASHTO TP 79-09) were input into the ANN and 

the outputs were compared with the laboratory-determined |E*|, as shown in Figure 5. Given 

that the 2009 dataset was much larger than the 2006 dataset and included a variety of unique 

mixtures and modified binders, the ANN performed quite well, accounting for 78% of the 

variability in the 2009 dataset. Although the ANN-predicted negative results for three data 

points and significantly overpredicted six others, it should be noted that these 9 data points 

represent a very small percentage of the 710 data points input into the ANN.  Beyond the 

obvious difference in mix and binder technologies, the disparities can also be contributed to 

the difference in frequency and temperatures at which the ANN was developed and those at 

which it was applied. The lowest frequency used in training the ANN was only 1 Hz, whereas 
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the 2009 dataset included frequency as low as 0.01 Hz. Likewise, the highest temperature 

used in the development was 37.8°C and in application was 45°C.  

 

  
 

Figure 5: Evaluation of ANN applied to 2009 Test Track mixes. 

5 SUMMARY AND KEY FINDINGS 

From this evaluation it appears that artificial neural networks are appropriate for predicting 

the dynamic modulus of the 2006 NCAT Test Track mixtures at intermediate temperatures 4-

37.8°C). All three ANNs closely predicted measured |E*| and showed improvement over their 

associated predictive models, consistent with other studies (Lacroix et al. 2008, Sakhaei Far 

et al. 2009).  

It was found that in the case of the NCAT 2006 Test Track mixtures, |E*| was primarily 

driven by a function of binder properties (|G*| and ) as well as temperature. The specimens 

used for |E*| testing were plant-produced mixtures compacted in the laboratory. As a result, 

some parameters such as air voids may have a smaller range of values than if cored from 

existing pavement. Therefore the correlation analysis conducted is specific to the laboratory-

compacted specimens. Additionally, the correlations are driven by mix type. Furthermore, it 

was found that only one volumetric property, Vbe, was necessary to characterize the mix 

properties due to its strong correlation with gradation parameters. The resulting ANN 

consisted of only two parameters: |G*|sin() and Vbe. From this it can be concluded that an 

ANN can be created with minimal input parameters and still predict |E*| very well.  

In applying the ANN to the 2009 Test Track mixtures, it was found that it performed 

moderately well with an R
2
 of 78%. The ANN was applied to a dataset that extended beyond 

the range of test temperatures and frequencies used in the development of the ANN and if 

both datasets were combined to re-train the ANN, it is likely that its prediction capabilities 

would be improved due to robustness of not only the testing conditions but also the variety of 

mixture and binder types. This evaluation showed the advantage of using an ANN to predict 

|E*| in that despite the differences in mix and binder types and testing conditions, the ANN 

was still able to predict |E*| with relative accuracy, showing an improvement over the 

capability of both Witczak models in predicting |E*| for an independent dataset.  
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