

RAILWAY SUBSTRUCTURE EVALUATION USING FWD

Simona Fontul

LNEC - Laboratório Nacional de Engenharia Civil, Lisbon, Portugal

Railway substructure evaluation using FWD – main issues

- MEASUREMENT SYSTEM STUDIES PERFORMED ON AN EXISTING RAILWAY LINE
- CLIMATIC INFLUENCE TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE
- LOAD INFLUENCE TESTS PERFORMED ON PHYSICAL MODEL GRANULAR VS BITUMINOUS
- INTERPRETATION BACK-CALCULATION OF GRANULAR MATERIAL LAYERS
- CONCLUSIONS

MEASUREMENT SYSTEM

STUDIES PERFORMED ON AN EXISTING RAILWAY LINE

- FWD UPGRADE TO RAILWAYS
- LOAD PLATE ADDAPTED TO MEASURE ON BALLAST

STUDIES PERFORMED ON A OLD RAILWAY LINE

- The experimental studies presented in this work aimed to construct and evaluate four solutions for structural reinforcement of old railway tracks, maintaining the ballast layer as structural layer.
- Ballasted track section
 - 36 m long, (4 experimental sections)
 - Iberian gauge (1.668 m)
 - bi-block sleepers
 - limestone ballast.

Before reinforcement

• FWD upgrading for railways tests

Railway substructure evaluation using FWD Simona Fontul

Load tests – PLT and FWD before reinforcement

FWD

0.40 m diameter plate/ 500 kPa

Plate load tests (PLT) 0.45m diameter plate / 200 kPa

PLT & FWD results Deformation moduli (E)

$$E = 0.75. d \frac{p}{\delta}$$

• 120 MPa design

Railway substructure evaluation using FWD Simona Fontul

GPR results on experimental sections

Load tests on experimental sections

LFWD on the subgrade

- 0.30 m diameter plate
- 200 kPa
- E ~ 70-80 MPa.

FWD on the top of the reinforcement

- 0.30 m diameter plate
- 400 kPa
 - 2 FWD test series
 - August
 - September

FWD results on experimental sections

LNEC | 9

FWD results on experimental sections

Railway substructure evaluation using FWD Simona Fontul

Backcalculation of FWD results

Deformation moduli obtained E (Mpa)

	FWD-August E (MPa)	FWD-September E (MPa)
Cement bound granular material (CBGM)	600	500
Unbound granular material (UGM)	150	120
UGM mixed with ballast (UGM+B)	180	160
Fouled Ballast (FB)	180	160
Subgrade (SG)	80	60

- UGM and fouled ballast modulus are adequate and similar to resilient modulus obtained in triaxial tests
- Subgrade soil modulus is similar to the LFWD results.
- Cement bound granular material modulus is low probably due to the difficulty of adequately mix the materials on site
- Decrease in the modulus values after rainfall: subgrade soils, UGM.

Backcalculation of FWD results

Railway substructure evaluation using FWD Simona Fontul

LNEC | 12

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

- E MODULI INCREASE DURING DRY WEATHER SIGNIFICANTLY
- MEASUREMENT PROBLEMS DEFLECTION MEASUREMENT
- MEASUREMENT PROBLEMS INCREASE NUMBER OF DROPS UNTIL DEFLECTIONS STABILISE
- DIFFICULIES IN BACKCALCULATION

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

Falling Weight Deflectometer (FWD) tests were undertaken during the construction of a **29 km new railway line**, at the top of the substructure and in different months **November , December, January and March** (June)

- **Quality control** during construction.
- Analyse and compare test results for different climatic conditions

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

 NDT tests were performed at the top of the sub-ballast layer

Railway substructure evaluation using FWD Simona Fontul

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

- Several load levels
 - in service traffic
 - construction traffic
- Testing campaigns in different seasons

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

ZNE<

Several other tests were performed

- PLT
- HFWD
- Portancemetre

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

Section	A1	A2	В	С	D
Sub-ballast (granite)	0.30 m	0.15 m	0.30 m	0.30 m	0.30 m
Capping layer (limestone)	0.20 m	0.35 m	0.35 m	0.50 m	0.40 m
Subgrade	0.80 m	0.80 m	0.65 m	0.50 m	0.60 m

Railway substructure evaluation using FWD Simona Fontul

LNEC | 17

GPR MEASUREMENT

• Change in layer thickness

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

Railway substructure evaluation using FWD Simona Fontul

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

Railway substructure evaluation using FWD Simona Fontul

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

Deformation modulus values

/INE<

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

Sec	RP	Nov	Dec	Jan	Mar	100
A1	2600	296	232	143	238	
A2	18100	298	305	202	318	E 60
В	3600	613	691	314	484	it 40
C	3800	-	594	265	497	idii o
D	17600	395	362	231	405	
						Nov Jan Mar May Jul Set Month

- It can be observed that the values obtained in November and December are quite similar, while in **January** they are **30 to 50% lower** than those obtained in November.
- Then, in March, the deformation modulus values tend to increase again to values closer to the ones obtained in the first two campaigns.

TESTS PERFORMED DURING CONSTRUCTION OF SUBSTRUCTURE

 Backcalculated sub-ballast elastic moduli variation with load peak November vs June

Railway substructure evaluation using FWD Simona Fontul

LOAD INFLUENCE TESTS PERFORMED ON PHYSICAL MODEL

- E MODULI INCREASE WITH LOAD
- MEASUREMENT PROBLEMS DEFLECTION MEASUREMENT
- MEASUREMENT PROBLEMS INCREASE NUMBER OF DROPS UNTIL DEFLECTIONS STABILISE
- DIFFICULIES IN BACKCALCULATION

LOAD INFLUENCE

TESTS PERFORMED ON PHYSICAL MODEL

- Two different substructures were reproduced in physical models, with different subballast materials:
 - Traditional solution 0.30m granite unbound granular material (UGM)
 - Italian HSL solution 0.12m bituminous material
- Cells dimension: 4.0x2.0m² by 2.8m depth

Non destructive tests

- Non destructive tests
 - Falling Weight Deflectometer (FWD)
 - Ground Penetrating Radar (GPR)
- > FWD tests location
 - six locations (A, B, C, D, E and F)
 - spaced approximately by 0.50 m
- > FWD tests characteristics
 - nine transducers (D1 to D8)
 - 30 mm load plate (segmented)
 - Stress levels applied (160 to 520 kPa)

LOAD INFLUENCE

TESTS PERFORMED ON PHYSICAL MODEL

LOAD INFLUENCE TESTS PERFORMED ON PHYSICAL MODEL

• E1 moduli for top layer

GRANULAR

BITUMINOUS

Railway substructure evaluation using FWD Simona Fontul

LOAD INFLUENCE

Five levels of loading were applied: 25, 50, 75, 90 e 120 kN

GRANULAR

Railway substructure evaluation using FWD Simona Fontul

0,90

1,75

2,65

Distância (m)

3,55

4,30

Railway evaluation using FWD DEBATE

- MEASUREMENT SYSTEMS ON RAILWAY LINES ??
 - TEST LOCATION
 - GEOPHONES POSITION ON SURFACE
- CLIMATIC INFLUENCE
 - THE E MODULI CAN BE SO DIFFERENT?? (5 X)
 - LIMESTONE GRANULAR E > 1000 MPa
 - HOW YOU CORRECT THE VALUES ACCORDING TO SEASON??
- LOAD INFLUENCE– GRANULAR VS BITUMINOUS
 - HOW YOU CORRECT THE VALUES ACCORDING TO SEASON??
- TESTING AND INTERPRETATION
 - TESTING PROCEDURE, NUMBER OF DROPS , NUMBER OF TESTS , GEOPHONES POSITION ON SURFACE
 - BACK-CALCULATION OF GRANULAR MATERIAL LAYERS.

Thank you for your attention!

simona@Inec.pt

Railway substructure evaluation using FWD Simona Fontul

LNEC | 31