BCRRA Conference

Trondheim, Norway June 25-27, 2013

WORK SHOP 1 - PAVEMENT DESIGN IN COLD REGIONS

Joel D. Ulring, P.E. Golder Associated Inc. Anchorage, Alaska USA June 24, 2013

- Introduction
- Anchorage Facts
- Municipality of Anchorage Pavement Design Practice
- State of Alaska Pavement Design Practice
- Summary

Joel D. Ulring P.E. Senior Geotechnical Engineer Golder Associates Inc. Anchorage Alaska

18 Years Public Service in Minnesota Counties

10 Years as Geotechnical Engineer Consultant

ANCHORAGE FACTS

July 2, 2013

ANCHORAGE FACTS

Anchorage Area Map

- Population

 Alaska
 790,000
 Anchorage
 300,000
- Significant Growth in 1970's

ANCHORAGE FACTS

Anchorage Facts

- **61°** North Latitude
- Design Thawing Index
 Air = 4000 ° Days
 Surface = 3200 ° Days
- Design Freezing Index
 Air = 3200 ° Days
 Surface = 6800 ° Days
- Typical Frost Penetration Depth 9 feet (2.75 m)

Municipality of Anchorage Pavement Design

MOA Design Criteria Manual – Chapter 1 Streets

- Section 1.10 Road Structural Fill Design
 - Primary Design Objectives
 - Reduce freezing and thawing impacts on road
 - Obtain roadway/Pavement design life

MOA Design Criteria Manual – Chapter 1 Streets

- Section 1.10 Road Structural Fill Design
 - Mandatory Design Objectives
 - Mitigate the formation of ice lenses
 - Prevent pumping of subgrade
 - Prevent differential frost heave

PAVEMENT DESIGN PROCESS

- Subsurface Soil Investigation (1 borehole ≈ 300 ft.)
- Laboratory Testing of Collected Soil Samples
- Soil Frost Group Index Determined Frost Group: NFS, F1, F2, F3, F4
- Thermal Analysis (Berg2)
- Design Pavement Section

FROST DESIGN SOIL CLASSIFICATION (1)

MOA Frost Group Soil Classification

FROST GROUP ⁽²⁾	GENERAL SOIL TYPE	% FINER THAN 0.02 mm BY WEIGHT	TYPICAL USCS SOIL CLASS	
NFS ⁽³⁾ [MOA NFS]	(a) Gravels Crushed stone Crushed rock	0 to 1.5	GW, GP	
	(b) Sands	0 to 3	SW, SP	
PFS ⁽⁴⁾ [MOA NFS]	(a) Gravels Crushed stone Crushed rock	1.5 to 3	GW, GP	
[MOA F2]	(b) Sands	3 to 10	SW, SP	
S1 [MOA F1]	Gravelly soils	3 to 6	GW, GP GW-GM, GP-GM, GW-GC, GP-GC	
S2 [MOA F2]	Sandy soils	3 to 6	SW, SP SW-SM, SP-SM, SW-SC, SP-SC	
F1 [MOA F1]	Gravelly soils	6 to 10	GM, GC, GM-GC, GW-GM, GP-GM, GW-GC, GP-GC	
F2 [MOA F2]	(a) Gravelly soils	10 to 20	GW, GP GW-GM, GP-GM, GW-GC, GP-GC	
	(b) Sands	6 to 15	SM, SW-SM, SP-SM, SC, SW-SC, SP-SC, SM-SC	
F3 [MOA F3]	(a) Gravelly soils	Over 20	GM, GC, GM-GC	
	(b) Sands, except very fine silty sands	Over 15	SM, SC, SM-SC	
	(c) Clays, PI>12		CL, CH	
F4 [MOA F4]	(a) Silts		ML, MH, ML-CL	
	(b) very fine slity sands	Over 15	SM, SC, SM-SC	
	(c) Clays, PI<12		CL, ML-CL	
	(d) Varved clays or other fine- grained banded sediments		CL or CH layered with ML, MH, ML-CL, SM, SC, or SM-SC	

(1) From U.S. Army Corps of Engineers (USACE), EM 1110-3-138, "Pavement Criteria for Seasonal Frost Conditions," April 1984

Typical Soil Types of Anchorage

MOA Design Criteria Manual – Chapter 1 Streets

- Section 1.10 Road Structural Design Methods
 - Minimum Section
 - Complete Protection Method
 - Excavate and replace frost susceptible soils with non frost susceptible soil (NFS)
 - Limited Subgrade Frost Penetration Method

Allows frost penetration of 10% into subgrade based on thickness of structural section

Provision for use of rigid board insulation to reduce structural section thickness.

Minimum Structural Section NFS Soil Subgrade

July 2, 2013

Complete Protection Method

Typical Pavement Structural Section

Limited Subgrade Frost Penetration Method

Typical Pavement Structural Section

TYPICAL STREET DESIGN SECTION Limited Subgrade Frost Penetration Method

LEVELING COURSE GRADATION

U.S. Std. Sieve	Cumulative % Passing by Weight
1"	100
3/4"	70-100
3/8"	50-80
#4	35-65
#8	20-50
#50	8-28
#200	*2-6

*In addition to the grading limits stipulated above, fractions passing the #200 sieve shall not be greater than seventy-five percent (75%) of the fractions passing the #50 sieve.

July 2, 2013

CLASSIFIED FILL GRADATIONS

-	Гуре II	Type II-a		
U.S. Std. Sieve		U.S. Std. Sieve		
Cumulative %		Cumulative %		
Passing by Weight		Passing by Weight		
8"	100	3"	100	
3"	70-100	3/4"	50-100	
1-1/2"	55-100	#4	25-60	
3/4"	45-85	#10	15-50	
#4	20-60	#40	4-30	
#10	12-50	#200	2-6	
#40	4-30			

#200

2-6

COMMENTS

- How should current climate trends be accounted for in design?
- Should design parameters (Freezing & Thawing Indices) within Berg2 analysis be adjusted?
- Should another thermal analysis model be considered?
- MOA is currently reviewing their pavement design manual.

THANK YOU ! QUESTIONS ?