Kategorier
Fysik Kärnenergi

Kärnenergi – Uran – Gruvdrift

När man talar om kärnenergi och då fission måste man komma ihåg att det finns ett fåtal fissila atomkärnor (sådan som kan splittras och brukas i en reaktor). Den som brukas mest är Uran-235 som finns naturligt, Plutonium-239 som produceras av Uran-238 genom neutron infångning, Uran-233 som kan produceras från Thorium-232 via neutron infångning. Detta betyder att vi bara har en naturlig isotop som kan brukas direkt som bränsle i kärnreaktorer.

Uran-235 förekommer naturligt i uranfyndigheter och då det finns mer uran i jordskorpan än både silver och guld borde det vara enkelt att få tag på. Men det är som med alla grundämnen en sanning med modifikation. Det kan finnas mycket men det måste vara brytbart, dvs kostnaden för utvinning får inte vara för stor. Men detta gäller om man bryter med uran som huvudprodukt, ofta är uran en biprodukt vilket gör utvinningen billigare. Dock är detta något som måste tas i beaktande för kostnaden.

Om vi ser på produktionen av uran så ligger den på ca: 50 000 ton per år idag, något som täcker behovet. Det man skall komma ihåg är att naturligt uran innehåller ca: 0.72% Uran-235 medan lätt-vatten reaktorer behöver en koncentration på 3-5% i sitt bränsle, en koncentration som kan vara högre i SMRs.

Även om det finns Uran i många länder så dominerar Kazakstan, Namibia, Canada och Australien som tillsammans står för ca 3/4 av världsproduktionen. Detta är något som gör tillgången geografiskt begränsad och priset känsligt för påverkan. På ett sätt är Uran mer osäkert ur ett strategiskt perspektiv än exempelvis olja eller gas, där produktionen är mer spridd. Detta kräver då insatser för att säkra tillgången på bränsle lokalt eller regionalt. Detta kan då innebära utvinning i lokala förekomster av uran. Vilket kan bli kostsamt om andelen uran i mineralen är låg eller om uran inte utvinns som biprodukt. Vad jag sett av debatten är inte detta ett spörsmål som har tagit upp i någon större omfattning.

När det gäller gruvdrift är tumregeln att den nästan alltid är miljöförstörande, om man bryter i dagbrott är det stora områden som kan ödeläggas, men detta gäller också underjordiska gruvor där man får stora mängder av restmaterial som i tillägg är radioaktivt.

När man separerat mineralet som innehåller uran, måste man få ut uranet, detta sker genom urlakning, dvs man använder starka syror för att lösa upp uranet och utvinna det i oxid form. Något som i tillägg ger stora mängder giftigt restmateria, slagg, som också är radioaktivt, ofta i mer koncentrarad form på grund av sönderfallsprodukter, som radium, polonium och radon. Så miljöpåverkan är ganska stor.

Det finns ett alternativ och det är in-situ leeching (urlakning på plats) där man egentligen inte har en gruva utan man pumpar ner urlakningsvätska (syror eller i några fall alkaliska lösningar) i uranförande lager, där uranet löses upp och pumpas upp till ytan för vidare behandling. Det kan se ut som en bra metod, men ger lakrester som måste lagras på grund av giftighet och radioaktivitet. I tillägg är miljöpåverkan på grund av det som pumpas ner inte ordentligt utrett. Här kan man jämföra med oönskade effekter vid fracking.

Så man kan konstatera att brytning av uran inte är speciellt ren eller miljövänlig. Det är en aspekt som man bör titta närmare på och lyfta upp i debatten. Speciellt som det kan komma handla om gruvdrift i närmiljön som kommer ge betydligt större utsläpp av radioaktivitet än en kärnrektor ger.

Man bör dock notera att det finns stora mängder uran upplöst som joner i haven, något som det tekniskt sett är möjligt att utvinna, som visats av japanska forskare på 1980-talet, men det har inte varit praktiskt möjligt att få till det.

Här handlar det dock om att försöka få till en reell helhetsbild och inte cherrypicking.

Kategorier
Experiment Fysik Kemi The light side

Mina Grundämnen – Neon

Neon är en ädelgas och det 5e mest förekommande grundämnet i universum. Det är trots detta relativt sällsynt på jorden, där det till skillnad från Helium inte skapas genom radioaktivt sönderfall. Neon skapas genom fusion av kol-12 kärnor i stjärnor och allt neon i universum kommer från detta. Det som de flesta förknippar neon med är det röd-oranga ljuset i neon-rör. Men neon har används i olika typer av vakuum-rör, men även i olika typer av lasrar, He-Ne laser eller excimerlasrar för XUV inom litografi i halvledar industrin.

För min del har jag i första hand jobbat med He-Ne lasrar, både för upplinjering, som ljuskälla i undervisningslaboratoriet och som referens för en våglängdsmeter. En He-Ne har normalt tre moder (våglängder) där två har en polarisation och en den vinkelräta mot dessa. Detta gör att man kan isolera en mod och bestämma exakt vilken våglängd den har med hjälp av absorption i jod, eller låsa våglängden genom att variera längden på laserkaviteten. Även om denna tekniken nu ersatts av andra är det mycket att lära sig med att bygga en jod-stabiliseras He-Ne laser.

Även om jag inte direkt jobbat med neon så har jag arbetat med en applikation där neon spelar en viktig roll. I ntnu.no/blogger/fysikkforfakirer/2019/07/31/mina-grundamnen-helium/ skrev jag om mitt arbete med en jon-guide där exciterat He var en källa till problem genom att det hamnade i Triplett-tillståndet, samma tripplet tillstånd som står för energin överföring från He till tillstånd i Ne som ger laser effekten. I och med att vi har en nästan resonant överföring av energi bör en liten inblandning av Ne i He-jeten göra att man får en minskning av antalet tripell-tillstånd. En minskning större än den man hade observerat med inblandning av Xe som har en icke-resonant överföring. Jag skrev en proposal och skickade till labbet som jag hade lämnat 1 år tidigare och bad de att prova. Jag fick dock inte något svar så jag vet änideg inte om det gjorde försöket eller inte.

Så på det sättet är neon ett av mina grundämnen.

Kategorier
Fysik Kärnenergi Undervisning

Kärnenergi, strategi och utbildning

Det är i dagarna en debatt om kärnenergi och hur den skall lösa energikrisen. Man ser inlägg som är odelat positiva och som koncentrerar sig på ett fåtal aspekter av ett i grunden komplicerat problem. Just detta är något som bör belysas genom att titta på andra inte så ofta debatterade aspekter.

En satsning på kärnenergi är en satsning som måste göras på lång sikt då det tar upptill 10 år att bygga ett stort kärnkraftverk, och till detta kommer en politisk process om placering och investeringar i tillhörande infrastruktur och miljöeffekter (bland annat från kylvatten). Så att bygga ett kärnkraftverk motsvarande de som finns i drift idag tar lång tid. En invändning som kommer är att det inte skall byggas konventionella kärnkraftverk utan det är små modulära reaktorer (SMR, https://www.iaea.org/topics/small-modular-reactors) som skall byggas. Dessa skall kunna massproduceras och vara mindre vilket gör att byggtiden går ner, de är enklare att placera nära existarande infrastruktur och vi kommer att ha de i drift fortare. Men detta är inte helt sant. Det finns idag över 80 olika designs för SMR men inte många är i drift idag. Man bör notera att The US Nuclear Regulatory Commission (NRC) har certifierat den första designen för en SMR med effekt 21 Februari 2023 https://www.federalregister.gov/documents/2023/01/19/2023-00729/nuscale-small-modular-reactor-design-certification.

Även om det finns olika designer så måste man demonstrera på ett adekvat sätt säkerheten i designen, då detta rör sig om en ny teknologi och att man inte har mycket erfarenhet med denna. Detta betyder att dessa måste först byggas och testas innan man kan börja en massproduktion, så även här kommer tidsfaktorn in och det dröjer troligen mer än 10 år innan det kommer att finnas generell tillgång på SMRs. Detta har också påpekats av representanter från näringslivet.

Men förutom detta så finns det idag en brist på personal som behärskar kärnteknik. På bland annat Direktoratet for strålevern og atomsikkerhet (DSA) finns det experter men inget kunnande vad gäller SMR och hur den tekniken ska kunna prövas för tillstånd att producera kraft. Detta är inte bara ett nationellt problem utan även ett Europeiskt problem. Många år av nedrustning och nedläggning av kärnkraft, ofta av ekonomiska orsaker, har inte bara lett till ökade utsläpp av växthusgaser och ett beroende av rysk gas, utan också till en nedmontering av den kunskapsbas som krävs för en utbyggnad. Det råder idag en brist på den kompetens som behövs för att kunna driva och kontrollera de nya kärnkraftverken (SMR och konventionella).

Det behövs ett kompetenslyft i Europa där det i dag saknas tillräckligt många utbildade personer på alla nivåer som kan utveckla och leda utbyggnaden av SMR. Detta gäller allt från forskning och utveckling på olika aspekter av SMRs, men även utbildning av personer som skall arbeta med ackreditering och kontroll och kompetent driftpersonal. Framför allt behövs forskning och utveckling som ge ökat stöd till den typ av SMR som kan producera eller återanvända sitt eget bränsle. De SMRs som planeras är inte generation IV reaktorer utan opererar med en öppen bränslecykel, där nytt bränsle måste tas in och avfallet hanteras på samma sätt som med existerande kärnkraftverk.

Tar man hänsyn till dessa aspekter är det tydligt att SMRs knappast kommer att kopplas till el-nätet inom en tidsperiod mindre än 10 år, utan de kommer troligen efter det. Om man tänker sig en framtid med SMRs så krävs en betydlig satsning på utbildning, exempelvis tar det minst 5 år att få färdigutbildade civilingenjörer inom fältet och skall man i tillägg ha en nationell utbildningen för att undvika att behöva rekrytera från redan existerande utbildningar i Europa, så krävs att planering av utbildningarna och rekrytering av undervisare inom specialfält startar minst 3 år innan utbildningen startar. Till detta kommer också behov för forskning, forskningsinfrastruktur och undervisningslaboratorier. Detta medför en kostnad som måste vara del i ett större beslut som satsning på kärnenergi. Det är därför inte bara en fråga om energiförsörjning utan även en utbildnings- och forskningsfråga där det behöver tas strategiska beslut.

Man bör även diskutera tillgång och framställning av kärnbränsle men det är en annan diskussion.

Kategorier
Fysik Kärnenergi Uncategorized

Kärnenergi – Ett enkelt problem?

Det har på grund av händelser i världen blivit en debatt om Kärnenergi (eller Kärnkraft som många kallar det) skall man bygga nya kraftverk eller rättare de skall byggas och det skall gå fort för att lösa energi krisen. Men är det så enkelt?

Fallet med Kärnenergi eller Fission är betydligt mer komplicerat än vad man kan tro. Debatten handlar mest om kraftverkan och inte alla steg före och efter. I tillägg måste man ta hänsyn till kompetens hos personal och byggtid.

Att bygga ett kärnkraftverk tar tid, från prospektering, byggande av infrastruktur och själva verket, så här kan fort byggtiden bli 10 år, och då är inte eventuella förseningar medräknade. Så med andra ord är det inte någon «quick fix». Det är möjligt att bygga mindre, Small Modular Reactors, men av dessa finns bara en (rysk) i drift när detta skrivs. Det finns designs och ofärdiga demonstrations exemplar, så det finns även här en osäkerhet angående tidsperspektivet. Så om man ser till det ligger den lösningen minst 10 år i framtiden. Här kommer det också ta tid att utbilda personal.

Men det finns andra aspekter som är viktiga att ta hänsyn till. Här ges några aspekter:

Utvinning av klyvbart material (bränsle), gruvdrift.

Anrikning av det klyvbara materialet.

Produktion av bränslestaver.

Drift av kraftverk.

Behandling av utbränt bränsle.

Upparbetning av utbränt bränsle.

Lagring av låg- och mellan-aktivt avfall.

Lagring av högaktivt avfall.

Det är egentligen mycket att säga om varje aspekt, så det blir ett inlägg för varje. Så håll ögonen öppna.

Kategorier
Fysik Kemi The light side

Mina Grundämnen – Fluor

Fluor är ett grundämne som finns i ganska mycket och som har en hel del miljömässiga problem. CFC-gaser och andra fluor baserade föreningar. Teflon känner de flesta till och finns i de flesta kök som non-stick i stekpannor och grytor.

Min erfarenhet av fluor har främst handlat om rengöring av glas, med fluorvätesyra (flussyra) som etsar glas men som också kan brukas för att få bort ytliga repor. I mitt fall fick vi en repa på Brewster-fönstret i vår argon-jon laser som behövde fixas. Så destillerat vatten, fluorvätesyra och optiskt papper användes för att fixa detta.

Den andra närkontakten med en Fluor-föringar (SF6) fick jag i England vid acceleratorn i Daresbury (Nuclear Structure Facility) under min postdoc då utrustning från denna skulle demonteras och packas för flytt till Jyväskylä. Acceleratorn, en van der Graff arbetar med höga spänningar varför man har SF6 som en skyddsgas för att hindra urladdningar. Detta är en tung gas, så om det blir ett läckage kommer den att ansamlas i lågt liggande fördjupningar som gropar eller dalar. Larmet gick och vi fick evakuera till skyddsvallarna runt anläggningen. En speciell upplevelse men den gången var det ett falsk larm.

Även om SF6 i sig är inert så kan man kvävas om den fastnar i lungorna på grund av sin tyngd. Tidigare har den dock brukats i små mängder för att få fram motsatsen till He-röst (hög frekvens) då man får en rejäl bas-röst. Men detta är för farligt så det party-tricket hoppas jag ingen gör längre.

Kategorier
Experiment Fysik Kemi The light side Uncategorized

Mina Grundämnen – Oxygen/syre

Oxygen/syre kan man kalla en av de lyckligaste grundämnena i Finland; happi! Men oxygen är oftast något man inte vill ha då det oxiderar metaller och annat. Oxygen är också en av orsakerna till massutdöenden på jorden. När organismer kunde utnyttja fotosyntesen så var oxygen en bi- eller avfallsprodukt som samtidigt råkade vara giftigt för många organismer som då dog ut.

Vi tänker inte på det men oxygen är giftigt för oss så koncentrationer över 30% är toxiska. Normalt innehåller atmosfären runt 21% så vanlig luft är livsviktig och inte toxisk. Det kan vara värt att notera att under Perm (250-300 miljoner år sedan) var oxygen koncentrationen närmare 30%, vilket gjorde att insekter med sina trakéer som fungerar genom diffusion kunde växa sig större än idag.

Även om man inte vill ha oxygen, så finns en del intressanta aspekter som man kan få med sig. Flytande oxygen är paramagnetiskt så det är möjligt att fånga flytande oxygen mellan två magnetiska poler [https://www.youtube.com/watch?v=Lt4P6ctf06Q ] problemet är att få fram flytande oxygen(kokpunkt 90K). I videon brukas en gastub och rör i flytande nitrogen (kokpunkt 77K) men man kan även låta flytande nitrogen förångas i en öppen termos, man får då en svagt blå vätska när det mesta förångats, detta är oxygen som då kan brukas för försöket.

Man kan också stoppa ner stålull i vätskan, ta upp och sätta eld på den. På grund av oxygen innehållet kommer det bli en explosiv förbränning, tidigare kunde man hitta brännmärken både på bänkar och i tak där fysik-studenter gjort just detta.

Kategorier
Fusion Fysik Kärnenergi Uncategorized

Fusion “Breakthrough”?

Den 5 December skedde det som omtalades som ett genombrott inom fusion vid Lawrence Livermore National Laboratory’s National Ignition Facility (NIF), genom «inertial fusion». Påföljande presskonferens den 13 December förstärkte den bilden. Men frågan är om detta egentligen är ett steg på vägen?

Det som NIF är del av är ett simuleringsprogram för att testa om kärnvapen som lagrats fortfarande ger önskad(?) sprängverkan. Det rör sig alltså inte om ett projekt där målet är att uppnå fusion för energiproduktion. Fusion i detta fall är ett medel för att se om simuleringarna stämmer.

Det som framstår som en «breakeven», det vill säga att mer energi skapas än det som man tillför systemet, är också en sanning med modifikation. Det som hände var att 2.05 MJ i 192 UV-laserstrålar fokuserades i en liten kavitet (hohlraum) med en pellet gjord av deuterium och tritium. I kaviteten skapades röntgenstrålar som tryckte ihop pelleten så att man fick igång en självgående fusion under någon miljarddels sekund. Här omvandlades ca delar av bränslet till He, neutroner och energi, totalt frigjordes 3.15 MJ. På det sättet är det en framgång, men hur för detta oss närmare kommersiell Fusionsenergi?

Det första man måste tänka på att man räknar med energin in i systemet (2.05 MJ) men det krävs nästan 300 MJ in i lasrar och andra delar för att få till detta. Det gör alltså att man måste öka effektiviteten 100 gånger innan man uppnått «grid-breakeven», dvs total energi in kontra det man kan ta ut.

Även om man räknar snällt med detta så kommer det inte vara möjligt att ta ut all energi som skapas, utan det kommer finnas förluster innan man kan få ut brukbar energi i form av elektricitet eller värme. Här kan verkningsgraden bli mindre än 50% (snällt räknat då <10% är troligare). Den teknologin är inte fullt utvecklad än och där har mycket arbete gjords vi JET och ITER där man vill skapa fusion med «magnetic confinement». Detta finns inte vid NIF, vilket förklaras av syftet att upprätthålla USAs kärnvapenarsenal.

Nästa är att lasrarna som man använder inte kan avfyras oftare än 1-2 gånger i veckan. För energiproduktion måste man troligen göra detta flera gånger per sekund. Vilket är ett mycket stort stag att ta. Som det är nu måste lasrarna och den optiska utrustning justeras om efter varje «skott» i tillägg till att optiken kan skadas vid varje «skott» och måste då bytas ut.

Kaviteten (hohlraum) som brukas måste göras med mycket hög precision då fel i storleken av en bakterie kan göra att det inte går att få till fusion. Varje av dessa kostar fler hundratusen dollar och flera månader på att utvecklas och konstrueras.

Så var det ett genombrott? För fusionsforskningen, ja. För energiproduktion med fusion, nej. Man har fått större förståelse för processerna men det är knappast ett steg mot energiproduktion, det är för många och stora problem som måste lösas först. Det stora genombrottet behövs inom «magnetic confinement» där man skall kunna ha en gående fusion över tid istället för under korta ögonblick. Så den tidskonstant som var aktuell när jag läste fysik på 1980-talet är troligen fortfarande sann; Om 30 år har vi kommersiell fusionsenergi. Det dröjer fortfarande 30 år….

Kategorier
Fysik Historia

I Principia eller inte…

Newton’s Principia är en av de mest banbrytande vetenskapliga arbeten som någonsin skrivits. Samtidigt är den av naturliga skäl en av de minst lästa av nutida fysiker och matematiker. Detta beror till stora delar på att den är ganska svår, inte bara för språket, den är skriven på latin, men också för att nomenklaturen är svår och till stora delar baserad på geometri på ett gammalt sätt. Att den första engelska översättningen, av Andrew Motte, i tillägg är otydlig och svårtolkad hjälper inte. Det finns en nyöversättning, av Anne Whitaker och Bernard I Cohen, som är lättare att läsa men fortfarande ganska svår för moderna människor. Detta och att matematiken ändrats sedan Newton’s tid bidrar till att få läst den. Samtidigt gör detta att en del referenser till Principia blir fel.

Principia består av tre «böcker» med olika innehåll. De två första innehåller den nya matematiken och Newton’s lagar och är riktade till en akademisk målgrupp. Den tredje boken, «The system of the world» är annorlunda. Den är mer populär och innehåller mer tillämpningar och exempel. Men här dyker det upp något intressant.

Motte’s översättning från 1729, innehåller de tre böckerna, men i tillägg även något som ser ut som en tidigare eller alternativ verson av den tredje boken. Här presenterad som «Treatise of the system of the world». Det vill säga den är egentligen inte en del av Principia, utan ett tillägg i den engelska översättningen.

I the treatise.. beräknar Newton den gravitionella avböjningen hos en pendel vid sidan av ett hemisfäriskt berg, vilken skulle vara mindre än 2 bågminuter, något Newton inte trodde skulle vara möjligt att observera. Men det var det och redan på 1770- talet genomfördes Schiehallion experimentet, av bland annat Nevin Maskelyne, där avböjningen observerades. Det som är intressant är att Maskelyne refererar till Principia och inte till The treatise… Denna «felcitering» har sedan följt med i beskrivningar fram till idag.

Hur gick det till? Maskelyne kunde Latin och borde haft tillgång till Principia i original. Men han kanske använde Motte’s översättning till vardags och tänkte kanske inte på att det inte fanns den latinska versionen. Svaret på detta får vi troligen aldrig, men en läxa av detta är att alltid gå och läs i original artikeln, lita inte på vad andra säger deg är inte säkert att de har läst den heller.

Kategorier
Fysik Kemi The light side Uncategorized

Mina Grundämnen – Nitrogen

Nitrogen, främst i sin flytande form är den form som jag använt mest. Då den har en temperatur på 77 K så fungerar den bra som hjälpmedel för sorption i vacuum system. Under min tid i Göteborg hämtade jag ofta nitrogen i en 25 liters dewar. Påfyllningen gjordes i ett rum där man satte i påfyllningsröret, satte på påfyllningen och gick ut. Genom fönstren där kunde man då se hur dimma bildades när notrogenen kokade bort innan vätska fylldes och när man såg att det sprutade över gick man i och stängde av.

Vi hade en del party trick med flytande nitrogen, man kunde låta det rinna över händerna, Leidenfrost effekten skyddade, kyla ner olika föremål eller «dricka» det. Återigen så skyddar Leidenfrost men man kan inte ha mycket i munnen eller låta det komma nära tänder. En ryss brukade svälja lite för att sedan komma med ett gigantiskt rap. När man kyler ner med nitrogen, händer det en hel del roliga effekter: Blommor blir skära som glas.

Strunt är strunt och snus är snus om än i gyllne dosor.
Mer rosor i ett krus är ändock alltid rosor.

Men i Nitrogen blir det:

Strunt är strunt och snus är snus om än i gyllne dosor.
Mer rosor i ett nitrogen krus blir spruckna rosor.

En klocka i bly klingar nedkyld som en fin mässingsklocka. Men ett radergummi (viskelär) kan explodera spontant på grund av spänningar i materialet när den kyls ner.

Maskinen som kan får fram flytande nitrogen med är i princip en Stirling-motor som körs baklängs, dvs det är möjligt att bygga om en sådan till en motor, något en kollega ville prova med en rysk maskin som stod i Jyväskylä. Det intressanta med den var att det var en exakt kopia av en väst-maskin. Till och med Made in och serienumret var kopierat.

Så nitrogen är ett grundämne som förutom att finns runt oss även ett som jag har jobbat med..

Kategorier
Fysik Historia Kemi The light side

Mina Grundämnen – Kol

Kol är ett grundämne som är mycket speciellt. Ser man astrofysiskt så borde egentligen inte Kol finnas. Eller rättare sagt, det är en mycket speciell egenskap som gjort att liv och tyngre grundämnen överhuvudtaget kan existera. Fusion i stjärnor ger i princip bara He-4, men Be-8 som man får när två He-4 kolliderar är inte partikelstabil, vilket betyder att den har en livstid på under 10^{-16} s det vill säga under den tiden måste en He-4 kollidera med Be-8 för att bilda ett exciterat tillstånd av C-12. Detta är mycket osannolikt, men nu finns en liten detalj till som hade kunnat ge en ännu mindre sannolikhet, dvs energinivåer i C-12. Det finns ett energitillstånd i C-12 som ger en ökad sannolikhet för reaktionen, hade energin varit annorlunda hade inte sannolikheten varit mycket mindre och hade inte kunnat ske. Så om det inte vore för det.. inget kol och inget liv..

Men det speciella med kol tar inte slut där. I sitt yttre skal finns 2s- och 2p-elektroner och det ger några mycket speciella egenskaper. p-elektronerna kan bilda 3 olika orbitaler och vi kan även få en hybridisering där s-elektronerna kommer till. Summan av det hela är att kol kan ha upptill 4 olika bindningar, se metan CH4. Men bindningarna kan variera så vi kan ha 1,2,3 st, vi kan ha dubbelbindningar och trippelbindningar. Något som gör att det kan binda med andra grundämnen på ett mycket varierat sätt, det vi kallar organisk kemi. Detta är grunden för liv.

Men vi får en annan egenskap och det har med kristallstrukturen att göra. Vi har två kristall strukturer som förekommer i naturen, Grafit och Diamant.

Grafit består av en hexagonal struktur med relativt starka bindningar i ett plan och svagare bindningar mellan planen. Planen bilder grafen, ett material med speciella egenskaper. Men planen kan också rullas ihop till rör eller till «fotbollar». Under mina studier så var det en forskargrupp (nabogruppen) som sysslade med beräkningar på just detta så vi fick hela tiden information om vad som hände i forskningsfronten. Så C-60 och C-70 var på den tiden «hett». Jag sysslade inte själv med det men det fanns diskussioner om hur man kunde göra olika experiment.

Diamant ligger mig varmare om hjärtat. I min utbildning ingick Fasta tillståndets fysik, där examinationen var en hemexamen där frågor skulle besvaras för ett grundämne som lottades ut bland studenterna, där jag fick kol, och valet var mellan Grafit och Diamant.

Diamant är en speciellt material, det är metastabilt, dvs diamanter förstörs sakta, det är i ren form en halvledare, men leder värme bättre än de flesta material. Det är transparent, extremt hårt och har ett högt brytningsindex.

Diamant förekommer naturligt och då ofta med olika föroreningar som ger de olika färgnyanser.

Rent fysiskt har diamant speciella egenskaper som gjorde svårt att att hitta data för min hemexamen, jag hade mer än 3 olika typer att förhålla mig till och att det antingen fanns mycket data eller inget alls. Så jag har ett intressant förhållande till kol och diamanter..