Kategorier
Experiment Fysik Kemi The light side

Mina Grundämnen – Neon

Neon är en ädelgas och det 5e mest förekommande grundämnet i universum. Det är trots detta relativt sällsynt på jorden, där det till skillnad från Helium inte skapas genom radioaktivt sönderfall. Neon skapas genom fusion av kol-12 kärnor i stjärnor och allt neon i universum kommer från detta. Det som de flesta förknippar neon med är det röd-oranga ljuset i neon-rör. Men neon har används i olika typer av vakuum-rör, men även i olika typer av lasrar, He-Ne laser eller excimerlasrar för XUV inom litografi i halvledar industrin.

För min del har jag i första hand jobbat med He-Ne lasrar, både för upplinjering, som ljuskälla i undervisningslaboratoriet och som referens för en våglängdsmeter. En He-Ne har normalt tre moder (våglängder) där två har en polarisation och en den vinkelräta mot dessa. Detta gör att man kan isolera en mod och bestämma exakt vilken våglängd den har med hjälp av absorption i jod, eller låsa våglängden genom att variera längden på laserkaviteten. Även om denna tekniken nu ersatts av andra är det mycket att lära sig med att bygga en jod-stabiliseras He-Ne laser.

Även om jag inte direkt jobbat med neon så har jag arbetat med en applikation där neon spelar en viktig roll. I ntnu.no/blogger/fysikkforfakirer/2019/07/31/mina-grundamnen-helium/ skrev jag om mitt arbete med en jon-guide där exciterat He var en källa till problem genom att det hamnade i Triplett-tillståndet, samma tripplet tillstånd som står för energin överföring från He till tillstånd i Ne som ger laser effekten. I och med att vi har en nästan resonant överföring av energi bör en liten inblandning av Ne i He-jeten göra att man får en minskning av antalet tripell-tillstånd. En minskning större än den man hade observerat med inblandning av Xe som har en icke-resonant överföring. Jag skrev en proposal och skickade till labbet som jag hade lämnat 1 år tidigare och bad de att prova. Jag fick dock inte något svar så jag vet änideg inte om det gjorde försöket eller inte.

Så på det sättet är neon ett av mina grundämnen.

Kategorier
Experiment Fysik Kemi The light side Uncategorized

Mina Grundämnen – Oxygen/syre

Oxygen/syre kan man kalla en av de lyckligaste grundämnena i Finland; happi! Men oxygen är oftast något man inte vill ha då det oxiderar metaller och annat. Oxygen är också en av orsakerna till massutdöenden på jorden. När organismer kunde utnyttja fotosyntesen så var oxygen en bi- eller avfallsprodukt som samtidigt råkade vara giftigt för många organismer som då dog ut.

Vi tänker inte på det men oxygen är giftigt för oss så koncentrationer över 30% är toxiska. Normalt innehåller atmosfären runt 21% så vanlig luft är livsviktig och inte toxisk. Det kan vara värt att notera att under Perm (250-300 miljoner år sedan) var oxygen koncentrationen närmare 30%, vilket gjorde att insekter med sina trakéer som fungerar genom diffusion kunde växa sig större än idag.

Även om man inte vill ha oxygen, så finns en del intressanta aspekter som man kan få med sig. Flytande oxygen är paramagnetiskt så det är möjligt att fånga flytande oxygen mellan två magnetiska poler [https://www.youtube.com/watch?v=Lt4P6ctf06Q ] problemet är att få fram flytande oxygen(kokpunkt 90K). I videon brukas en gastub och rör i flytande nitrogen (kokpunkt 77K) men man kan även låta flytande nitrogen förångas i en öppen termos, man får då en svagt blå vätska när det mesta förångats, detta är oxygen som då kan brukas för försöket.

Man kan också stoppa ner stålull i vätskan, ta upp och sätta eld på den. På grund av oxygen innehållet kommer det bli en explosiv förbränning, tidigare kunde man hitta brännmärken både på bänkar och i tak där fysik-studenter gjort just detta.

Kategorier
Experiment Fysik Kemi The light side Uncategorized

Mina Grundämnen – Beryllium

Beryllium är ett av de grundämnen som inte borde finnas, den stabila isotopen Be-9 kan inte bildas genom fusion och Be-8 skulle bestå av två alfa, vilket inte är en partikel-stabil isotop, kan inte bildas. Beryllium kan vi dock få genom att tyngre kärnor genomgår fotodissociation.

Men samtidigt är det bra då beryllium är mycket giftigt för oss. Men samtidigt har det en rad mycket bra egenskaper, lätt, starkt och leder värme mycket bra, vilket gör att det används inom rymdindustrin (med ordentliga säkerhetsföreskrifter). Men vi kan hitta beryllium i ex. golfklubbor (beryllium-brons) vilket gör att en golfklubba kan innehålla tillräckligt mycket för att ta livet av en mellanstor stad.

Det är inte bara beryllium utan även berylliumoxid har bra värmeledningsegenskaper, samtidigt som det är en isolator. Detta gjode att BeO användes som isolationsplattor för högeffek-transistorer i ex. gas-lasrar. Man kunde också hitta BeO i laserrör hos vissa tillverkare. Numera är wolfram det som är vanligast även om BeO förkommer.

Beryllium har i tillägg en intressant position i periodesystemet som gör det intressant får beräkningar av atomstrukturen. Men samtidigt är det en metall med hög smältpunkt varför det saknades experimentella data under 1980-talet. Det var vid den tiden jag började titta på möjligheten att få en atomstråle av Be med en population av meta-stabila (långlivade tillstånd) som har låg sannolikhet att deexiteras till grundtillståndet. Test av andra metaller med hög smältpunkt visade att det var möjligt att få en stråle. Populationen kunde ökas genom en urladdning i strålen. Så i princip var det möjligt. Problemet som kvarstod var att få till en laser i ultraviolett. Detta var ett problem som då inte var löst, det är det idag, så lösningen var att exitera med pulsade lasrar och använda rf för att studera tillstånden.

Planen var att använda en smalfrekvent kontinuerlig laser och använda den som oscillator (seed) i en pulsad förstärkare. Vi hade tillgång till pulsade lasrar som kunde pumpa förstärkaren, men var tvungna att se om det skulle gå att få till. En gammal blixlamps pumpad färgämneslaser användes för ett första test. Vi såg en liten förstärkning i en uppställning som var långt i från optimal, så det såg ut att vara möjligt.

Vi designade en ny uppställning och skaffade uppgifter om kostnaden. Totalt ca350000 kr i den dagens penningvärde och skrev en ansökan till NFR (forskningsrådet) vilket var inom den angivna ramen. Problemet var att beloppet var stort och skulle behandlas av FRN istället, med de hade en undre gräns på 500000kr. Så ansökan som kom högt upp på rangeringen hamnade utanför på grund av beloppet.

Vad hände sedan? Grupp en förlorade några medlemmar och andra satsade på andra projekt, så det kom ingen uppföljning nästa år och projeket dog ut…

Så beryllium är lite speciellt för mig då jag har haft bruk för det samtidigt som det är en påminnelse av ett projekt som aldrig blev..

Kategorier
Experiment Fysik Historia Kemi The light side

Mina Grundämnen – Helium

Helium är det näst vanligaste grundämnet i universum. Trots det är det inte så vanligt på jorden, utan kan klassas som utrotningshotat (se: https://www.ntnu.no/blogger/fysikkforfakirer/2018/02/02/utrotningshotade-grundamnen/ ). Men detta beror främst på svårigheter att utvinna helium. Dock är det så att de tyngre grundämnena i jordens inre konstant genererar helium genom alfa-sönderfall.

Helium är ett grundämne som man observerade på solen(därav namnet, Helium efter Helios solguden i grekisk mytologi) innan man fick fram det på jorden. Solförmörkelsen 1868 gjorde att många observerade den gula He-linjen i coronan, Det är dock Janssen som fått äran, ibland med Lockyer som föreslog att det var ett nytt grundämne. De första som isolerade helium på jorden var Cleve och Langlet 1895.

Det främsta vetenskapliga bruket av helium är för att kyla ner supraledare, och det finns många artiklar som tar upp cryogenetiska användelser och studier av helium vid låga temperaturer. Jag har inte jobbat med flytande helium men har arbetat med det på andra sätt.

Helium spektret är ett av de experiment som jag fick göra som student och senare som handledare. Det intressanta med det spektret är att det är två spektra i ett. Singlett-He och Triplett-He, Parahelium och Ortohelium. Något som borde göra det enkelt att lösa, men så är inte fallet. Det går att göra grova beräkningar för att få fram energinivåerna, med systemet är ett tre-kroppa problem utan analytsika lösningar så olika approximationsmetoder måste användas. Men mina erfarenheter med detta visade sig komma till nytta på ett oväntat ställe.

Efter att jag försvarat min avhandling fick jag jobb vid University of Birmingham, UK, där ett experiment med laserspektroskopi på radioaktiva isotoper skulle flyttas till Finland. Vid den tiden var varma jonkällor vid acceleratorer i bruk på den flesta ställen. Men i Jyväskylä använde man sig av en gas-jet (He)(IGISOL) där producerade isotoper stoppades och tog åt sig elektroner i gasen, så att sedan skjutas ut i en gas-jet. Jeten som man får (om tryckskillnaden är stor nog) är supersonisk, dvs de enskilda atomerna är kall (låg spridning i hastighet) i alla fall om man har en fri expansion. Då var det många som sa att det inte skulle vara möjligt att få en smal hastighetetsfördelning som möjliggjorde laserspektroskopi. Det fanns studier som antydde att så var fallet.

Dock hade man i dessa studier använt elektriska fält (runt 500 V/cm) i expansionsvolumen. Då alla atomer rör sig med ungefär samma hastighet där så kommer ett fält att accelerera ev. joner (som skall studeras) och de kommer då att kollidera med långsammare He-atomer och tappa fart, vilket i sin tur ger en ökad hastighetsspridning. Lösningen var att minska fält-styrkan för att undvika detta.

Men det fanns ett problem till, med gas-jet, den är inte speciellt effektiv så allt som stoppas kan inte utnyttjas utan det kan sluta som atomer eller dubbelladdade joner. Här kommer heliums energinivåer in. Grundtillståndet ligger på runt -24eV, vilket gör att allt som stoppas i gasen borde sluta som dubbelladdade joner. Men det sker inte, något som man kan tro beror på föroreningar i gasen. För mycket och man tappar alla joner. Men Helium har två system Triplett-He som är metastabilt har en «jonisationsenergi» runt 4,7 eV. Men denna energinivå tillsäger att man bara får atomer. Så det handlar om en balansgång. Problemet är att man inte vet om det finns Triplett-He i gasen, det borde men vad jag vet så är det inte bekräftat än. Det finns två sätt, 1) obsertvera ljus får gas-kammaren och se efter triplett linjer eller 2) under exteremt rena förhållanden se efter en jon med massa 8, He-molekyl jonen. Även om Helium är en ädelgas så kan den bilda molekyler men då måste en eller båda av atomerna vara i triplett-tillståndet.

Så helium är ett av de grundämnen som jag har ett speciellt förhållande till.

Kategorier
Experiment Fysik Historia Kemi The light side Uncategorized

Mina grundämnen-Väte/hydrogen

Väte är det lättaste grundämnet och består i sin enklaste form av en proton och en elektron. Det förekommer i tre olika isoptoper som har fått egna namn, Deuterium och Tritium (efter 2 och 3). Namnet Väte fick det då Ekeberg(1795) inte hittade ett bättre svenskt namn för hydrogenium (vattenbildare) som är det engelska namnet, Wasserstoff på tyska. Så på ett sätt är det en slump att Svenska (och Finska, Vety) avviker till viss del från andra språk.

Väte är det vanligaste grundämnet i universum och kan observeras på himlen, både med optiska teleskop (Balmer alfa- linjen i rött) och med radioteleskop (7 cm linjen).

Som atomfysiker är väte-spektret en av de första som man träffar på. Det är relativt enkelt att både studera och analysera. Samtidigt så används vätets olika spektrallinjer inom ex. astrofysiken. Men samtidigt är väte intressant för olika typer av precisionsmätningar. Att mäta vätespektret med hög precision var under min studietid något som genomfördes på de främsta laboratorierna. Och nya mer precisa värden av ex. Rydbergskonstanten kom med jämna mellanrum allt medan nya spektroskopska tekniker utvecklades. Även idag så finns ett stort intresse men då när det gäller mätningar på Anti-väte (en antiproton och positron) för att se om det finns någong skillnad mellan materia och anti-materia.

För min del så var vätespektret en av laboration som jag handledde som doktorand under flera år vid CTH. Den utrustning som vi hade där (en prisma spektrometer) hade inte den bästa upplösningen, men det finns idag relativt billiga spektrometrar där det är möjligt att se isotopskiftet mellan väte och deuterium.

Men det är inte bara inom atomfysik man kan utnyttja väte. Deuterium och protoner är ganska bra projektiler i kärnfysik experiment. I tillägg kan man detektera väte med radioteleskop, vilka idag är tillgängliga för amatörer. Så det finns en ganska stor potential i undervisningen.

Även om jag inte direkt jobbat med väte i forskningen, så är det ett grundämne som är där och som vi fortfarande utforskat fullt ut. Man har kanske observerat metallist väte nu. Men det behöver bekräftas, så historien är inte slut än.

Kategorier
Experiment Fysik Historia Kemi The light side

«Mina» grundämnen!

I samband med periodesystemets år 2019, finner man olika typer av aktiviteter och artiklar om olika grundämnen. I Sverige har man tilldelat de olika universiteten olika grundämnen som de är faddrar för. I tillägg had det gjorts ett försök med Landskapsgrundämnen för att få upp kemiintresset.

Då jag varit aktiv inom både atom- och kärnfysik som forskare och genom detta kommit i kontakt med olika grundämnen, kan det vara naturligt(?) att skriva om mina erfarenheter med just dessa grundämnen. En del har jag bara(?) behandlat teoretiskt medan andra har haft en mer praktiskt betydelse, som material i utrustning eller som grundämne som jag deltagit i studier av. Totalt rör det sig om ett 30-tal grundämnen som jag haft kontakt med både bildligt och bokstavligen. Jag kommer att behandla grundämnena i olika inlägg och ska försöka begränsa mig till ett grundämne åt gången, men i vissa fall kan man behandla flera på en gång.

Kategorier
Experiment Fysik Historia Laborationer Lärande Undervisning

Pendeln fungerar också som en analogi för undervisning.

Man säger att den som inte lärt av historien kommer att upprepa den. Detta gör det intressant att läsa gamla läromedel, något som faktiskt kan vara ett intressant forskningsfält. Då med tanke på när olika saker kom in i undervisningen hur det presenteras och hur presentationen utvecklats.

Bland min samling av antikvariska läroböcker finns ett fint exempel av paret Petrini; Henrik och Gulli, Enklare fysiska experiment utgiven 1905. Men när man läser inledningen så slås man av hur mycket av detta nu kommer tillbaka. Pendeln slår tillbaka.  Många av råden är sådana som jag själv gett elever och studenter under mina år som undervisare(innan jag fick tag på boken 2005). Så inget nytt under solen.

 

Jag återger delar (i original) här och hoppas att ingen tar illa upp. Det är ett mycket talande tidsdokument.

Enklare fysiska experiment.

I. Allmänna anvisningar.

Inledning. År 1905 bildar en vändpunkt i det svenska undervisningsväsendets historia; ty från och med i år införes den experimentella metoden i undervisningen vid statens läroverk. Visserligen att börja med endast i två ämnen, fysik och kemi, men det är att hoppas, att de andra — närmast biologi och psykologi — skola följa efter i den mån de vetenskapliga metoderna i dem hinna lämpa sig för skolans behof. Häraf blir nu en omedelbar följd, att en exaktare undervisningsmetod måste vinna insteg äfven i alla andra undervisningsanstalter såsom i samtliga flickskolor, folkskoleseminarier och folkskolor. De sistnämnda hafva alldeles särskilda förutsättningar härför, i det att de hittills varit totalt befriade från den tidsödande språkundervisningen. Med en reform af religionsundervisningen kan i dem godt utrymme beredas för en verkligt uppfostrande och för lifvet fruktbärande undervisning i de exakta vetenskaperna matematik, mekanik, fysik, kemi och biologi jämte deras tekniska tillämpningar på industri och åkerbruk, just de områden, hvaråt de flesta af folkskolans alumner komma att ägna hela sitt återstående lif.

Men hvarifrån taga lärare till denna undervisning ?

Hvad först de fullständiga allmänna läroverken beträffar, så torde det öfverallt finnas lektorer som äro fullt kompetenta att anordna en sådan undervisning, och det vore därför önskvärdt, om dessa nu ville åtaga sig densamma i fjärde och femte klasserna för att i realskolan sätta igång en modärn experimentell undervisning, som hvilar på elevernas laboratorieöfningar Läroverksrådet T. Moll har i särskilda broschyrer lämnat anvisningar på dels huru lokalerna böra inredas och dels huru undervisningen lämpligen kan anordnas, anvisningar som torde vara i allmänhet tillräckliga för lärarna i dessa skolor. Men i realskolor, samskolor, flickskolor, folkskoleseminarier och folkskolor torde det ännu finnas lärare och lärarinnor som själfva aldrig idkat laborationsöfningar vid universitet eller annorstädes och därför känna behof af en något utförligare ledning vid laborationsöfningarnas anordnande.det är hufvudsakligen för dem, som denna bok är afsedd.

Den experimentella undervisningen bör naturligtvis börja redan i småskolan — såsom den faktiskt gör i matematik, då barnen få räkna på kulor — men sedan ej häller afbrytas. Mätningar och vägningar böra göras så tidigt som möjligt och den experimentella geometrin och fysiken böra sättas i omedelbart samband med undervisningen i papp-, trä- och metall-slöjd. De barn som äro i tillfälle att börja tidigt med laborationer kunna få experiment och konstruktionsöfningar mer varierade än som här visas, de som börja senare få åtnöja sig med ett mindre urval.

Hvarje elev bör vara försedd med två tämligen tjocka anteckningsböcker. Den ena användes som kladd under experimenten ; i den andra renskrifves experimentet, hvarefter den lämnas att genomses och rättas af läraren. Härvid iakttages, att texten förekommer endast på hvaran nan sida, under det eleven gör på den andra sidan en så tydlig och vacker ritning som möjligt af de experimentella anordningarna. Läraren bör undvika att i början gifva några formulär eller andra dylika förhållningsregler för barnen att gå efter. Det må vara nog med följande enkla regel:

»Skrif och rita så tydligt, att en kamrat som ej har gjort experimentet skulle kunna göra efter hvad du har gjort, endast genom att se din beskrifning. »

Eleven bör själf få försöka sig på att dra slutsatser ur sina resultat och eventuellt härleda en lag. Först vid rättandet af uppsatsen bör läraren visa huru man plägar exaktare formulera den af eleven funna lagen och lära honom att göra en beräkning i en särskild kolumn i tabellen af kvoten ( » proportionella »), produkten ( »omvändt proportionella») etc. af de funna storheterna eller deras kvadrater, kuber m. Om det visar sig att man i denna kolumn får ett tal som är ungefär konstant, tages medelvärdet af de erhållna talen. Äfven bör eleven tillhållas att aktgifva på felkällor. Hvarje bestämning bör göras minst två gånger, så att eleven får tillfälle att uppskatta felets storlek och förstå hvarför han bör undvika att sedan vid beräkningarnataga med för många decimaler. Efter någon tid bör han vänja sig vid att beräkna felet i uppskattningarna i procent af totala värdet.

De olika experimentens ordning sins emellan bör ej bestämmas med någon pedantisk hänsyn till ämnets natur annat än där detta är absolut nödvändigt, nämligen då ett experiment ovillkorligen förutsätter kännedom om ett annat. Man får då ständigt fritt val mellan experiment tillhörande de mest skilda områden, hvarigenom möjliggöres att experimenten kunna ordnas efter deras lättfattlighet, de experimentella svårigheterna, och de matematiska förutsättningarna. Denna decentralisation är äfven af nytta för eleven, i det att han får vänja sig vid att bli kastad »in medias res» och omedelbart gripa sig an med en ny sak. Härigenom blir hans bildning mer aktuell och kommer ej, såsom nu ofta är fallet, att bestå blott i ett vetande, som är så väl sorteradt i särskilda fack, att han ej kan tillämpa detsamma på ett särskildt fall, förrän han lyckats passa in detta under en lämplig rubrik. Däremot bör man pa lektionstimmarna hänvisa till experimenten och sammanfatta hvad eleverna därvid lärt sig.

Det är synnerligen uppfostrande för eleven att vänja sig vid att ständigt kunna reda sig med de enklaste och de mest varierande rent tillfälliga hjälpmedel. Ju mer af egen uppfinningsförmåga han nedlägger vid arrangerandet af experimentet, dess bättre. Kan han tilläfventyrs hitta på en egen metod att bestämma en sak, så må han försöka densamma och sedan pröfva den genom att göra om bestämningen efter en annan metod. Enklare apparater böra så vidt möjligt förfärdigas af eleverna själfva, och skolan får därigenom så småningom ett tillräckligt antal exemplar af dem. Man bör hällre lägga an på att med stativ, glasrör, korkar, kautschukslangar, glasbägare,

millimeterpapper etc. sammansätta behöfliga apparater än att köpa dem färdiga, en apparat för hvart experiment. Frånsedt prisbilligheten äro sålunda anordnade experiment de mest uppfostrande, helst de gifva eleven en eggelse att hemma experimentera på egen hand.

 Om läraren har tillräckligt material för att låta alla barnen göra samma experiment samtidigt, så kan han naturligtvis sköta en större afdelning, än om olika lag skola göra olika experiment. I förra fallet kan han låta eleverna förena sig i grupper om två och två som göra experimentet tillsammans. En stor fördel härmed är, att läraren kan sammanställa de olika gruppernas resultat. Vid början af lektionen ger han några korta anvisningar på 5 a 10 min., hvarefter eleverna få gå att själfva framtaga hvad de behöfva. Är klassen så stor, att 30 st. arbeta samtidigt vore det godt, om någon äldre elev (från en annan klass) ville åtaga sig att vara amanuens och hjälpa till. Men i en skola med ringa tillgångar bör läraren, så länge han är ovan, ej taga mer än 16 elever på en gång. Dessa ordnas i fyra grupper om fyra stycken, och hvarje lag för sitt särskilda experiment. Hållas dessa laborationer t. ex. en gång i veckan, behöfver läraren sålunda endast omkring en gång i månaden tänka ut nya experiment, fyra stycken, och afprofva dem. Om man blott lyckas öfvervinna en viss misstro till sig själf och griper sig an med att anordna experimenten, skall man till sin förvåning finna huru ytterligt ringa hjälpmedel man kan reda sig.

Men redan efter en termin bör läraren hafva vunnit tillräcklig erfarenhet och eleverna blifvit tillräckligt hemtama på laboratoriet för att han skall kunna fördela dem i grupper två och två, äfven om olika lag skola göra olika experiment; i detta fall bör den ena hälften af afdelningen komma 1/2 timme senare än den andra.

 

En annan rolig detalj är att det exemplar jag har är dedikerad av författarna till Svante Arrhenius.