Ammar Ahmed
Om
Ammar Ahmed tok sin bachelorgrad i informatikk fra Sukkur IBA University, Pakistan, i 2023. Han var gjesteforsker ved NTNU på en fullfinansiert utveksling i 2023. Han er for tiden studentforsker ved Intelligent Systems and Analytics (ISA) Forskningsgruppe og masterstudent i anvendt informatikk ved Norges teknisk-naturvitenskapelige universitet (NTNU), Norge under stipend. Hans forskningsinteresser inkluderer dyp læring, datasyn og naturlig språkbehandling (NLP). Under studiene ble han anerkjent for sin akademiske fortreffelighet, og mottok en gullmedalje og fire merittbaserte stipend.
Kompetanseord
Publikasjoner
Enhancing wrist abnormality detection with yolo: Analysis of state-of-the-art single-stage detection models
This study employs single-stage deep neural network-based detection models. Our models outperform the commonly used two-stage detection algorithm, Faster R-CNN, in fracture detection, enhancing pediatric wrist imaging.
Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset
Wrist pathology recognition reframed as fine-grained problem; outperforms existing techniques. LION optimizer integration enhances network’s performance. XAI integrated into architecture for pinpointing discriminative regions in wrist X-rays.
2024
-
Tøn, Aslak;
Ahmed, Ammar;
Imran, Ali Shariq;
Ullah, Mohib;
Azad, R. Muhammad Atif.
(2024)
Metadata augmented deep neural networks for wild animal classification.
Ecological Informatics
Vitenskapelig artikkel
Tidsskriftspublikasjoner
-
Tøn, Aslak;
Ahmed, Ammar;
Imran, Ali Shariq;
Ullah, Mohib;
Azad, R. Muhammad Atif.
(2024)
Metadata augmented deep neural networks for wild animal classification.
Ecological Informatics
Vitenskapelig artikkel