What is a Good PhD?

— some «common sense» and personal views

Lasse Natvig
Professor in computer architecture

Lasse@computer.org

From: How to Write and Publish a Scientific Paper, Robert A. Day 5th ed.

Presentation Overview

- What is a Good PhD?
 - Context
 - PhD theses I have supervised (6 + 3) or evaluated (15)
 - Quality → Importance of focus
 - Research group / Supervisor / PhD student
 - Reproducibility and testing (Method)
 - Quantity
 - 6 papers «The Reidar Model»
 - From NTNU regulations
 - Surprise

From the official NTNU regulations

Underlining and coloring by Lasse

- From Guidelines for the Assessment of Candidates for Norwegian Doctoral Degrees, Section 3.2 Assessment of the thesis [NTNU12b]:
 - A Norwegian doctoral degree is awarded as proof that <u>the candidate's</u> <u>research qualifications</u> are of a certain standard
 - ... the academic <u>standard and quality</u> of the work submitted
 - ...the candidate must satisfy the minimum requirements to qualify as a researcher demonstrated through requirements related to the formulation of research questions, precision and logical stringency, originality, a good command of current methods of analysis and be able to reflect on their possibilities and limitations...
 - ... thesis must <u>contribute new knowledge</u> to the discipline and be of an academic standard <u>appropriate for publication</u> as part of the scientific literature in the field

. . .

And more! ☺

CONTEXT AND FOCUS

How to focus within architecture?

A PhD student must focus even more!

JUMP to
 The illustrated guide to a Ph.D by Matt Might

http://matt.might.net/articles/phd-school-in-pictures/

Research Workflow

From: How to Write a Computer Architecture Paper, lecture about miniproject report writing in TDT4260 comp.arch [Jahre-14]

REPRODUCIBILITY

Abstraction/Models & Reproducibility

- Model of a system
 - Model the interesting parts with high accuracy
 - Model the rest of the system with sufficient accuracy
- "The Danger of Abstraction"
 - George E. P. Box:
 - "All models are wrong but some are useful"
 - "Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful"
- Hm..., how to get people to trust our research?
 - 100% precise documentation!
 - Reproducibility

Give "all" experimental details

	Crossbar Based Architecture			Ring Based Architecture		
	4-core	8-core	16-core	4-core	8-core	16-core
ITRS Year of Production	2007	2010	2013	2007	2010	2013
Feature Size (nm)	65	45	32	65	45	32
Shared Cache Size (MB)	8	16	32	8	16	32
Memory Bus Channels	1, 2 or 4	1, 2 or 4	1, 2 or 4	1, 2 or 4	1, 2 or 4	1, 2 or 4
Interconnect Latency (End-to-End/Per Hop)	8/-	16/-	30/-	-/4	-/4	-/8

Table III CACHE PARAMETERS

Cache	Size	Associativity	Access Latency	Cycle Time	MSHRs / WB	Banks	Area
	(4-core/8-core/16-core)		(cycles)	(cycles)	(per bank)		(mm^2)
Level 1 Private Cache	64KB	2	3/2/2	2	16MSHRs/4WB	1	2.3/1.1/0.5
Level 2 Private Cache	1 MB	4	9/6/5	4/3/2	16	1	14.6/7.0/3.6
Level 2/3 Shared Cache	8/16/32 MB	16	16/12/12	4	16/32/64	4	94.0/91.9/84.7

Table IV PROCESSOR CORE PARAMETERS

Table V							
INTERCONNECT	AND	DRAM	INTERFACE				

Parameter	Value	Parameter	Value			
Clock frequency	4 GHz	Crossbar Interconnect	8/16/30 cycles end-to-end transfer			
Reorder Buffer	128 entries		latency, 32 entry request queue,			
Store Buffer	32 entries	Disc. Intercent	Pipelined (2/4/6 pipe stages)			
Instruction Queue	64 instructions	Ring Interconnect	4/4/8 cycles per hop transfer latency, 1/1/2 pipe stages per hop, 32 entry			
Instruction Fetch Queue	32 entries		request queue, 1/2/2 request rings, 1			
Load/Store Queue	32 instructions		response ring			
Issue Width	4 instructions/cycle	Point to Point Link	4/3/2 transfer latency, 32 entry			
Functional units	4 Integer ALUs, 2 Integer		request queue			
	Multipy/Divide, 4 FP ALUs, 2 FP	Main memory	DDR2-800, 4-4-4-12 timing, 64 entry			
	Multiply/Divide		read queue, 64 entry write queue, 1			
Branch predictor	Hybrid, 2048 local history registers,		KB pages, 8 banks, FR-FCFS			
	4-way 2048 entry BTB		scheduling [21], Closed page policy			

From: A Quantitative Study of Memory System Interference in Chip Multiprocessors, Jahre et al., HPCC09

Reproducibility

Ten Simple Rules for Reproducible Computational Research, by Geir Kjetil Sandve et.al. [SNTH13]

- 1: For Every Result, Keep Track of How It Was Produced
- 2: Avoid Manual Data Manipulation Steps
- 3: Archive the Exact Versions of All External Programs Used
- 4: Version Control All Custom Scripts
- 5: Record All Intermediate Results, When Possible in Standardized Formats
- 6: For Analyses That Include Randomness, Note Underlying Random Seeds
- 7: Always Store Raw Data behind Plots Matplotlib, gnuplot
- 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing Detail to Be Inspected
- 9: Connect Textual Statements to Underlying Results
- 10: Provide Public Access to Scripts, Runs, and Results

Parallel computers using random numbers might execute non-deterministically

More on reproducibility (Anno 2014)

 4'th Int'l Workshop on Adaptive Self-tuning Computing Systems [ADAPT'14]

> Two papers got the quality mark reproducible

 1st ACM SIGPLAN Workshop on Reproducible Research Methodologies and New Publication Models in Computer Engineering [TRUST14]

See also: http://ctuning.org/ and http://www.dividiti.com/
(Grigori Fursin & Anton Lokhmotov)

More on reproducibility

- Repeatability in Computer Science
- Techn. Report (68 pages)

http://reproducibility.cs.arizona.edu/

L	Legend							
Classification		Code Location		Build Results				
ВС	Paper where the results are backed by code.	LATHCIE	Code is found from link in the article itself.	OK ^{≤30}	We succeed in building the system in ≤30 minutes.			
NC	being backed by code.	Web	Code is found from a web search.		We succeed in building the system in >30 minutes.			
HW	Paper excluded due to replication requiring special hardware.		Code is provided by author after email request.	OK ^{>Author}	We fail to build, but the author says the code builds with reasonable effort.			
EX	Paper excluded due to overlapping author lists.	EM ^{no}	Author responds that the code cannot be provided.	Fails	We fail to build, and the author doesn't respond to survey or says code may have problems building.			
		EM ^Ø	Author does not respond to email request within 2 months.					

TESTING

The importance of testing

- (Industry typically use 50% of work force for testing)
 - They cannot afford low quality (can we?)
- Running benchmarks in computational comp.arch.
 - Common practice has not been perfect: Assumed
 OK if simulator does not crash

From ADEPT workshop January 2014

Presented by David Black-Schaffer, Uppsala [SHBS14]:

	id Black-Schaffer	Upps	ala University / Department o	of Information Technology		1/21/14 24		
	An Aside: the Importance of Verification							
	Benchmark			Verifies in Reference	Verifies using VFF	Verifies when Switching		
	400.perlbench 433.milc 458.sjeng 471.omnetpp 483.xalancbmk	401.bzip2 453.povray 462.libquantum 481.wrf	416.gamess 456.hmmer 464.h264ref 482.sphinx3	Yes	Yes	Yes		
	410.bwaves 436.cactusADM 470.lbm	434.zeusmp 444.namd	435.gromacs 459.GemsFDTD	No	Yes	Yes		
	445.gobmk 429.mcf 437.leslie3d 403.gcc 447.dealII 465.tonto	450.soplex 473.astar	454.calculix	Fatal Error ¹ Fatal Error ² Fatal Error ³ Fatal Error ⁴ Fatal Error ⁵ Fatal Error ⁶ 13/29 verified,	Yes	Yes Yes Yes Yes No Yes		
Terminates prematureFails with internal errBenchmark segfaults						28/29 verified		

QUANTITY

When is 6 papers good enough?

- First/main author of most
 - "If the thesis consists primarily of papers, the candidate must normally be the main author or first author of at least half the papers" [NTNU12a]
- At least 2 4 in <u>high quality</u> conferences or good journals
- All in acceptable journals, conferences or good workshops
 - IDI Relevant Conferences (357), A and B rating (can have weaknesses) [IDI-AB]
 - 1 (or maybe 2) can be in state submitted, if …
- Watch out!
 - There are "fake conferences" and "bogus journals" (and websites)
 - Accepting papers written by paper-automata
 - You can easily get papers published that NEVER should have been published
 - Your and (your supervisors) responsibility

PhD as a collection of papers

• If the thesis consists of several interrelated minor pieces of work, the candidate must document the integrated nature of the work and the assessment committee must decide whether the content comprises a coherent entity. In such cases, the candidate must compile a separate part of the thesis that not only summarizes but also compares the research questions and conclusions presented in the separate pieces... [NTNU12b]

Haakon Dybdahl [Dybd07]

Figure 3.2: The research focus for the different papers.

... more examples of research process

Figure 3.1: A conceptual illustration of the research process and relevant contributions

Figure 3.1: Research process and relation of papers

SURPRISE

How to supervise within a topic you do not know?

- ... or know only to some extent
- Case b) Change of main supervisor (not common)
- Case a) Your own student working efficiently and independently/self-driven
 - A normal case, or ideal case
 - How well can the PhD student answer your questions?
 - Clear and precise descriptions?
 - "General attitude"
 - from "maximum quality" to ... (worst case) "don't care attitude"

Motivate your supervisor!

- Use the time with the supervisor efficiently
- Be prepared
 - Bring results, ideas, questions
- Take notes
- Give your supervisor time to prepare
- Help him/her supervise
 - Write readable
 - Use figures, visualizations (→ jupyter.org ?)
 - Use abstraction
 - Be precise and pedagogical
- You have one project, your supervisor might have 10-30 "projects"

Scientific writing, precision

- Notation/concepts
 - Often new concepts
 - Use best/most common terminology --- if it exist
 - Define your terminology precisely
 - Stick to it, be consistent!
- "help the reader"
- More (in Norwegian)
 - Lasse's enkle tips om rapportskriving

References

Disclaimer: Some of these are "low-value references" (All are incomplete, but contain hyperlinks)

[ADAPT14] The 4'th Int'l Workshop on Adaptive Self-tuning Computing Systems, Vienna, January 2014

[Djup08] Evolving Static Hardware Redundancy for Defect Tolerant FPGAs, PhD thesis by Asbjørn Djupdal

[Dybd07] Architectural Techniques to Improve Cache Utilization. Dr.ing. thesis by Haakon Dybdahl, 2007

[Hart05] Evolution of Fault and Noise Tolerant Digital Circuits, PhD thesis by Morten Hartmann, 2005

[IDI-AB] IDI Relevant Conferences (list for travel grants, A and B rating)

[Jahre10] Managing Shared Resources in Chip Multiprocessor Memory Systems, PhD thesis by M. Jahre, 2010

[Jahre14] How to Write a Computer Architecture Paper, lecture about miniproject report writing in course TDT4260 comp.arch, given by Nico this spring

[JN10] Computational Computer Architecture Research at NTNU, ERCIM News April 2010

[NTNU12a] Regulations For The Philosophiae Doctor Degree (PhD) at NTNU, 23 January 2012.

[NTNU12b] Guidelines for the Assessment of Candidates for Norwegian Doctoral Degrees, NTNU 13 June 2012

[SHBS14] Full Speed Ahead: Detailed Architectural Simulation at Near-Native Speed,

Andreas Sandberg, Erik Hagersten, and David Black-Schaffer. March 2014, Tech.report 2014-005

[SNTH13] Ten Simple Rules for Reproducible Computational Research, Geir Kjetil Sandve et.al., 2013

[Techop] Computer Architecture, from Techopedia

[TRUST14] 1st ACM SIGPLAN Workshop on Reproducible Research Methodologies and New Publication Models in Computer Engineering, Edinburgh, 12 June 2014.

Questions

Contact:

Lasse.Natvig@ntnu.no