70% stryk i fysikk og fratrekks-forenkling
I fjor strøk vel 60% av studentene ved Fysikk kompletteringskurs,
både ved den ordinære eksamen i august og ved kontinuasjonseksamen
i januar. En vesentlig årsak var at de nye studentene hadde mindre
kunnskaper i matematikk enn ventet, særlig i symbolregning (algebra).
I år var forelesninger og foreleser bedre forberedt på dette.
Jeg hadde til og med en lektor fra Brundalen VGS tilstede hele tiden for
å sikre at nivå og progresjon var tilpasset dagens elever fra
VGS. Studentene møtte trofast opp både på forelesninger
og gruppeøvinger, og arbeidet iherdig. De samme studentene møtte
opp på eksamen 21.8. Eksamensoppgavene var lettere enn i fjor.
Nå, etter å ha rettet eksamsbesvarelsene, er det klart at
resultatet er heller svakere enn i fjor, med strykprosent som vil nærme
seg 70% (avhenger av sensors bedømmelse). Igjen synes det som om
årsaken er så sviktende matematiske ferdigheter at studentene
er ute av stand til å formulere et fysisk problem.
I den forbindelse har et helt nytt fenomen dukket opp, som jeg vil kalle
«fratrekks-forenkling». To typiske eksempler er:
Ortodoks forenkling: mu u
=
4m 4
Fratrekks-forenkling:mu u
=
4m 3m
Ortodoks forenkling:
(mu+3mv) =m(u+3v)
Fratrekks-forenkling:
(mu+3mv)=m(u+2mv)
Av årets 107 studenter har minst 20 konsekvent nyttet denne matematiske
nyskapning, som tydeligvis var helt ukjent for fjorårets 160 studenter.
Videre har et like stort antall overhodet ikke forenklet i det hele tatt,
men latt multiple forekomster av faktorer som m stå uforkortet
i fred hver for seg i sluttsvarene.
Nå kjenner jeg selvfølgelig til, og respekterer, moderne
vitenskapsfilosofiske retninger som hevder at ingen teorier eller metoder
er fortrinnsberettigede, siden ingen helt ut kan bevises likevel (konferer
Dragvoll-miljøet, exphil etc). Uansett dette undres jeg på
hvordan 20 av årets avgangselever fra videregående skole, uten
påvisbar forbindelse med hverandre, samtidig har kommet på
nyskapningen, og i eksakt samme form. Skulle fratrekks-forenkling være
ett av Departementets forsøksvise utspill, i stil med«moderne
matematikk» for noen tiår tilbake?
Tanken virker utenkelig, men likevel. Departement og videregående
skoler danner jo et koselig, hermetisk lukket system. Departementet gir
VGS de stadig nødvendige impulser og reformer, og Departementet
overvåker resultatenes kvalitet ved hjelp av prøve-eksamensrett
og avgangseksamener gitt av Departementet, uanfektet av støy og
mas fra uten- og u-forstående som industri, næringsliv, universiteter
og høyskoler. Hvis Departementets skoleteoretikere og pedagoger
finner at elevenes, og dermed Departementets, tilværelse blir enklere
ved å endre på ubetydelige matematiske regler, er dette gjort
med noen pennestrøk samt nye sett med kontrollerende eksamensoppgaver.
Suksess måles så i prosentvis antall lykkelige elever som består
avgangseksamen og kan sendes ut i samfunnet med Departementets garantistempel.
Denne metodens fortreffelighet har allerede blitt demonstrert i videregående
skole, ved vellykket fjerning av algebra fra matematikken og industrielt
befengte emner som transformatoren fra fysikken. Det er ikke rart at NTNU
nå synes fristet til å følge etter. Hvis studentene
blir lykkeligere og bedre mennesker av reduserte fagpensa og stadig økende
dose av åndsutviklende filosofiske fag, kan dette lett kompenseres
av reduserte eksamenskrav, slik at produksjonen av NTNU-garanterte sivilfilosofer
endog kan økes. Alle tekniske og forskningmessige oppgaver i det
virkelige liv utføres jo av dataprogrammer likevel, og programfeilen
som førte til Sleipner-plattformens havari er sikkert forlengst
blitt rettet opp.
Svein Sigmond
Professor ved
Fakultet for fysikk, informatikk og matematikk
|