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ABSTRACT  

Very large sample sizes are required for estimating effects which are known to be small, and for addressing 
intricate or complex statistical questions. This is often only achievable by pooling data from multiple stu-
dies, especially in genetic epidemiology where associations between individual genetic variants and 
phenotypes of interest are generally weak. However, the physical pooling of experimental data across a 
consortium is frequently prohibited by the ethico-legal constraints that govern agreements and consents for 
individual studies. 
 Study level meta-analyses are frequently used so that data from multiple studies need not be pooled to 
conduct an analysis, though the resulting analysis is necessarily restricted by the available summary statis-
tics. The idea of maintaining data security is also of importance in other areas and approaches to carrying 
out ‘secure analyses’ that do not require sharing of data from different sources have been proposed in the 
technometrics literature. Crucially, the algorithms for fitting certain statistical models can be manipulated 
so that an individual level meta-analysis can essentially be performed without the need for pooling 
individual-level data by combining particular summary statistics obtained individually from each study. 
DataSHIELD (Data Aggregation Through Anonymous Summary-statistics from Harmonised Individual 
levEL Databases) is a tool to coordinate analyses of data that cannot be pooled. 
 In this paper, we focus on explaining why a DataSHIELD approach yields identical results to an indivi-
dual level meta-analysis in the case of a generalised linear model, by simply using summary statistics from 
each study. It is also an efficient approach to carrying out a study level meta-analysis when this is appropri-
ate and when the analysis can be pre-planned. We briefly comment on the IT requirements, together with 
the ethical and legal challenges which must be addressed. 

 
 

INTRODUCTION 
 
Very large sample sizes are required for the estimation 
of effects which are known to be small, and for addres-
sing intricate or complex statistical questions. This is 
particularly so for genetic epidemiology studies where 
associations between individual genetic variants and 
phenotypes of interest are generally weak, and when 
scientific focus is often on the detection of rarer vari-
ants and the study of gene-gene and gene-environment 
interactions (1,2). Sample sizes that are sufficiently 
large for adequately powered analysis are often only 
achievable by pooling data from multiple studies. This 
has led to the development of large collaborative con-
sortia for genome-wide association studies (GWAS) 
which have been responsible for many of the more 
recent findings in genetic research (3,4). 
 To achieve sufficiently large sample sizes, one would 
ideally prefer to conduct an individual-level meta-
analysis (ILMA) by combining the data from every in-
dividual in each participating study into one large data 
set, and analysing this as a single study (allowing for 
centre-to-centre heterogeneity). However, because indi-
vidual level data can be highly sensitive, and in many 
cases can actually disclose subject identity, the sharing 

of individual-level data always raises important ethical, 
legal and social issues (5-12). Thus, the physical pooling 
of experimental data across a consortium is frequently 
prohibited by the specific ethico-legal constraints that 
govern agreements and consents for individual studies. 
Biomedical science is especially cautious about such 
issues, and guidelines are frequently being revised in 
response to new threats to security (13,14). Thus, al-
though scientifically preferable, a conventional ILMA 
is often not viable in practice. 
 In contrast, a study level meta-analysis (SLMA) is 
often consistent with ethico-legal restrictions and 
enables the effective estimation of simple gene-disease 
associations, such as those targeted in a genome-wide 
association study analyses. Here, each collaborating 
group in the consortium performs an analysis on its 
own data, and shares the resulting association statistics 
with an agreed analysis group. A meta-analysis is then 
conducted on these study-level statistics to obtain 
associational estimates across the whole consortium. 
Crucially, raw data are not shared at any point between 
the different studies. An SLMA is an ideal solution to 
data sharing for simple analyses, for which an analysis 
can be pre-planned. But, for more complicated inves-
tigations, an exploratory investigation will often be 
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required and so statistical analyses cannot be specified 
so easily in advance. In these cases, an SLMA can 
become unwieldy and restrictive as it depends on the 
summary statistics already available from the chosen 
studies. Crucially, important new research questions 
cannot be addressed until additional information is 
agreed upon and then extracted from the original 
studies. 
 DataSHIELD (Data Aggregation Through Anony-
mous Summary-statistics from Harmonised Individual 
levEL Databases) has been proposed as a method which 
yields identical results to an ILMA for a particular – 
though broad – class of analyses, generalised linear 
models, but without the need for pooling individual-
level data (11). DataSHIELD exploits modern distribu-
ted computing methods to perform a parallelised ana-
lysis using a remote access analysis server (5). Central 
to this idea is the fact that all the data from any indi-
vidual study in a consortium remain on their own local 
‘data computer’ (DC), and cannot be accessed or even 
seen by any of the other studies or by the statistician 
coordinating the analysis. A ‘central’ node, which 
could be one of the DCs or an additional computer, is 
designated as the ‘analysis computer’ (AC). The AC 
coordinates the analysis on all DCs simultaneously, by 
transmitting appropriate blocks of code to each DC. 
The code contains instructions on what analysis should 
be executed, and which low-dimensional summary sta-
tistics should be sent back to the AC. The fundamental 
idea is that these summary statistics can be manipula-
ted independently of the local computers to facilitate a 
combined analysis. The DataSHIELD approach can be 
implemented using appropriate pre-specified statistical 
software, such as R, on each DC. A DataSHIELD 
analysis satisfies the strict requirement that individual-
level data are not shared and, in this regard, may be 
viewed as ethico-legally equivalent to an SLMA. 
DataSHIELD thereby offers the potential to resolve 
tensions due to the conflicting goals of scientific pro-
gress and participant confidentiality whilst allowing 
the flexibility to ask new questions of the data (11). 
 The central concept of DataSHIELD, notwith-
standing the various statistical and technical issues, is 
simple and is related to an approach that has been 
introduced in the technometrics literature (5,7,15). The 
approach described in (7) entails an iterative round-
robin mechanism used to compute, for example, the 
relevant statistics for what is referred to as “secure 
summation”. This is initialised by a study chosen at 
random, study A, which generates the statistic of 
interest, SA, from its own data. To obscure this value, 
so that the owners of the next study in the sequence 
(study B) cannot infer anything about it, a large 
random number is generated, M, known only to the 
owners of study A, and (SA + M) is passed on to study 
B. Study B then adds the value of its own statistic, SB, 
to (SA + M) and passes this on the next study, and so 
on. This process continues until, eventually, the overall 
sum returns to study A and the random number M is 

subtracted to give the correct grand-total. This 
approach can be used to carry out a secure linear 
regression (7). 
 DataSHIELD supports an efficient and rapid imple-
mentation of more sophisticated and interactive analy-
ses than does the round-robin approach in (7); not least 
because the latter requires a higher level of 
cooperation among the participating groups, which are 
all actively involved in the statistical analysis. For ex-
ample, because each group must command the fitting 
of each model itself, there must be prior agreement on 
the form that models of increasing complexity will 
take. However, the potential drawback of using a cen-
tral server with independent client computers (7,11), is 
that certain calls, or combinations of calls, from the 
AC to the DCs could disclose sensitive individual-
level information. Predictably, calls of this nature may 
breach ethical and legal guidelines and therefore 
cannot be amongst the ‘allowable’ or ‘permitted’ 
operations. Much of the challenge of developing 
DataSHIELD lies in identifying potential disclosure 
and designing an IT infrastructure which can protect 
against it (5,7,11). This is under active development 
but falls outside the scope of this present paper. The 
focus of this paper is rather on the statistical under-
pinning of a DataSHIELD analysis. Specifically, we 
explain why DataSHIELD works for the class of gene-
ralised linear models using the iterative reweighted 
least squares (IRLS) algorithm for parameter estima-
tion (16,17). In particular, we detail mathematically 
why physical pooling of the data from the independent 
studies is not necessary, and why the DataSHIELD 
approach mimics an ILMA. An example of a 
DataSHIELD-type analysis is then provided for a 
problem based on logistic regression. We discuss the 
future application of the method to new classes of 
analysis and comment on some of the perceived sta-
tistical challenges. 
 
 
ILMA VIA DATASHIELD 
 
Any mathematically permissible SLMA can be per-
formed very efficiently using DataSHIELD and is more 
straightforward to carry out than a traditional SLMA 
as it can be fully automated. In this case, the summary 
statistics required from the parallel analyses are simply 
the final analytic results from each centre which are 
transmitted once from each study to the analysis centre. 
However, the potential of DataSHIELD extends much 
further, and can in theory be used to fit a generalised 
linear model (GLM), yielding identical results to those 
obtained from an ILMA but without pooling indivi-
dual-level data. This is made possible via a trivial mo-
dification of the iterated reweighted least squares algo-
rithm (IRLS) (16,17), which iteratively requests non-
identifying summary statistics from each study, and 
combines these appropriately to estimate the parame-
ters of the GLM. The mathematics behind this idea is 
straightforward, but it appears not to have been exploi-
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ted, thus far, by biomedical researchers. We will now 
illustrate how this aspect of DataSHIELD ‘works’ to 
provide identical results to an ILMA analysis in a stan-
dard GLM setting (with fixed effects). We focus on the 
situation where data are horizontally partitioned, that 
is, where the collaborating studies have all measured 
the same outcome and covariates on all their study 
participants and that information relating to any given 
individual can be found in one, and only one, study. 
 
Fitting a generalised linear model using 
DataSHIELD 
 
First, consider the case of a single study where N in-
dependent observations are collected on a dependent 
variable Y and on a set of q covariates for each indivi-
dual, summarised by the matrix ࢀࢄ ൌ ሺ࢞ଵ, … ,  ேሻ, with࢞
࢞

் ൌ ൫ݔଵ, … ,  ൯ representing the q-dimensionalݔ
vector of covariates for individual i. Assume that the 
relationship between Y and X for individual i can be 
summarised by the Generalised Linear Model (GLM) 
 

ߟ ؔ ݃ሺߤሻ ൌ  ,࢞ࢀࢼ

  (Identity 1) 

where, as is consistent with standard notation (17), ߟ 
is the linear predictor, ݃ is the link function specified 
by the researcher, ߤ is the mean of Yi with ࣆ ൌ
ሺߤଵ, … , ்ߚ ேሻ, andߤ ൌ ሺߚଵ, … ,  ሻ is the parameterߚ
vector we wish to estimate.  
 From the definition of a GLM, the random variable 
Y must be drawn from a distribution parameterised by 
 and ߶ (the latter being a dispersion parameter) which ߠ
belongs to the exponential family (e.g. Gaussian, bino-
mial, Poisson), so that its probability density function, 
f, is of the form 

݂ሺݕ|ߠሻ ൌ exp ൭
ߠݕ െ ܿሺߠሻ

߶
  ݄ሺݕ, ߶ሻ൱. 

            (Identity 2) 

It can be shown (17) that 
 

:ߤ ൌ ሾܧ ܻሿ ൌ
݀ܿሺߠሻ

ߠ݀
 ; ሾݎܸܽ  ܻሿ ൌ ߶

݀ଶܿሺߠሻ

ߠ݀
ଶ ؔ ߶ ܸ . 

 (Identity 3) 

For example, for a logistic regression in which ߤ ൌ  
(the proportion of positive responses), 

ߟ ൌ ݃ሺሻ ൌ log


1 െ 
 ; ܿሺߠሻ ൌ െ logሺ1 െ ሻ ;  ߶ ൌ 1 

so that 

݀݃ሺߤሻ

ߤ݀
ؔ ݃ᇱሺሻ ൌ

1
ሺ1 െ ሻ

 ;    ܸ ൌ ሺ1  െ  ሻ

(Identity 4) 
The IRLS algorithm 
The IRLS algorithm (16,17) is a method for finding 
approximate maximum likelihood estimates for ࢼ. 
This is an iterative procedure, closely allied to the 
Newton Raphson method (17). We denote by ࢼ௧ the 

vector ࢼ at the tth iteration. The IRLS algorithm 
derives ࢼ௧ାଵ via the identity: 

௧ାଵࢼ ൌ ௧ࢼ   ௧ሻࢼሺ࢙௧ሻିࢼሺࡵ 

(Identity 5) 
where I is the expected information matrix and s is the 
score function. The quantities I and s are defined as 
 

௧ሻࢼሺࡵ ൌ  ;ࢄ௧ࢃࢀࢄ

௧ሻࢼሺ࢙ ൌ ࢅ௧൫ࢃࢀࢄ െ  ,ሻ൯ݐሺࣆሻ൯݃ᇱ൫ݐሺࣆ

where Wt is a diagonal matrix with diagonal entries: 
 

ሻିଵݐሺݓ ൌ ܸሺݐሻ݃ᇱሺߤሺݐሻሻଶ 

                 (Identity 6) 

relating to the ith individual, i=1,...,N, and 

݃ᇱ൫ߤሺݐሻ൯ ൌ ݀݃൫ߤሺݐሻ൯ ݀⁄  ሻݐሺߤ

The notation ߤሺݐሻ is used since the quantity ߤ depends 
on ࢼ, and hence on t. The process of updating ࢼ is re-
peated until the estimates ‘converge’ in the sense that 
some pre-established convergence criterion is met. 
 To see that this procedure can still be used when the 
data derive from different studies and are not pooled 
into one large study of size N, note first that we can 
write I and s in terms of vector summations across all 
N observational units (i.e. the N subjects in the pooled 
analysis): 

௧ሻࢼሺࡵ ൌ  ሻݐሺݓ
ே

ୀଵ

 ࢞࢞
், 

and 
           

௧ሻࢼሺ࢙ ൌ ሺݕ െ ሻݐሺߤ

ே

ୀଵ

ሻ݃ᇱ൫ߤሺݐሻ൯ݓሺݐሻ࢞. 

Next, note the following characteristics of the quanti-
ties ߤሺݐሻ, ݃ᇱ൫ߤሺݐሻ൯ and ݓሺݐሻ:  
 
1. We can estimate  ݃ሺߤሺݐሻሻ via identity (1), since ࢼ௧ 

is known at iteration (t+1) from the previous 
iteration. 

2. Using this, it is then straightforward to estimate 
 .ሻ via the known inverse link function ݃ିଵሺሻ; e.gݐሺߤ
for logistic regression, ߤሺݐሻ ؔ ሻݐሺ ൌ ௧ࢼሺݔ݁

 )/(1்࢞
௧ࢼሺݔ݁ +

 )), which is the expected probability of a்࢞
positive response at iteration t. 

3. Since we know the general form of the function ݃, 
along with the value of ߤሺݐሻ, it is possible to 
calculate ݃ᇱ൫ߤሺݐሻ൯. As an illustration, identity (4) 
denotes the general form of ݃ᇱ൫ߤሺݐሻ൯:= ݃ᇱ൫ሺݐሻ൯ in 
the logistic case, with ݃ᇱ൫ሺݐሻ൯ =1/ሺݐሻሺ1 െ  .ሻሻݐሺ

4. Since the form of the probability density function of 
Y is known, and therefore the function ܿሺሻ is also 
known (identity (2)), we can estimate  ܸሺݐሻ ൌ
݀ଶܿሺߠሻ ߠ݀

ଶ⁄  for iteration t (identity (3)); in the 
particular case of logistic regression, identity (4) 
denotes the relevant function, with ܸሺݐሻ ൌ ሻሺ1ݐሺ െ
 .ሻሻݐሺ
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5. Finally,  ݓሺݐሻ can be calculated using ݃′൫ߤሺݐሻ൯  and 
ܸሺݐሻ via identity (6). 

 
Calculating ࡵሺࢼ௧ሻ and ࢙ሺࢼ௧ሻ is now straightforward and 
-௧ାଵ can therefore be derived via identity (5), concluࢼ
ding the current iteration and enabling parameter re-
finement to progress. It should be noted that the vector 
summation notation (above) implies that ߤሺݐሻ, 
݃Ԣሺߤሺݐሻሻ and ݓሺݐሻ may ultimately be calculated for 
each individual within each study, using only the high-
lighted identities and the observed data for that 
particular individual, ሼݕ,  ሽ. Hence, if the N࢞
individuals are split into S sub-studies with Nj 
observations in sub-study ݆ ൌ 1, … , ܵ, the expected 
information matrix ࡵ and the score function ࢙ can still 
be extracted. In particular, 

             

௧ሻࢼሺࡵ ൌ   ሻݐሺݓ

ேೕ

ୀଵ

ௌ

ୀଵ

 ࢞࢞
் ൌ  ௧ሻࢼሺࡵ

ௌ

ୀଵ

, 

and 

௧ሻࢼሺ࢙ ൌ  ሺݕ െ ࢞ሻݐሺݓሻሻݐሺߤሻሻ݃ᇱሺݐሺߤ ൌ

ேೕ

ୀଵ

ௌ

ୀଵ

 ,௧ሻࢼሺ࢙

ௌ

ୀଵ

 

 

without the need to pool the data across all the studies. 
The IRLS algorithm therefore still works, and, in ess-
ence, we can mimic an individual level analysis with-
out sharing individual level data at all. Of course, the 
data in each study must exist in the same format with 
the same scale for the outcome variable and covariates 
for this to work. But this is an essential requirement 
for almost any joint analysis anyway; the contributing 
studies must be harmonised in some sense. Where the 
data structure differs between biomedical studies but is 
amenable to active retrospective harmonization, the 
need for harmonization can often be fulfilled using an 
approach such as the DataSHaPER (18,19). It is also 
desirable that the same version of analytic software is 
installed on each DC, as different versions of the same 
package may use different algorithms, which could 
prevent or bias the analysis. 
 
An illustration using logistic regression 

To demonstrate the idea behind DataSHIELD, we give 
a simple example of a logistic regression analysis. The 
simulated data are based loosely on the outcome 
myocardial infarction (binary outcome), with systolic 
blood pressure X1, body mass index X2, and a genetic 
variant reflected in a single nucleotide polymorphism 
(SNP) genotype X3 as covariates. If N(, 2) denotes a 
normal (Gaussian) distribution with a mean of  and a 
standard deviation of , we assume that: 

X1 ~ N(120, 72); 
X2 ~ N(25, 32). 

In addition, if Bin(2, ) is the distribution of positive 
responses (0, 1 or 2) in a sample size of two indepen-
dent observations, where  is the probability that each 

observation will be positive, we assume that the geno-
type is distributed as: 

X3 ~ Bin(2,0.3), 

this implying that if the minor (rare) allele is denoted g 
and the common allele G, the minor allele frequency is 
0.3 and the respective probabilities of the three SNP 
genotypes GG, Gg and gg are: (1–0.3)2 = 0.49; 
2(0.3)(1–0.3) = 0.42; and 0.32 = 0.09. 
 The occurrence of a myocardial infarction for indi-
vidual i, Yi, occurs with probability p i, and is related to 
the covariates via 

          logit(p) = –0.5 + 0.1X1 + 0.05X2 – 0.3X3 

where the function ‘logit’ is defined as logit(p) = 
log(p/ሺ1 – pሻ). 
 The DataSHIELD approach is illustrated by simula-
ting data for six hypothetical horizontally partitioned 
case-control studies from the above model with case-
control ratios as detailed in Table 1. 
 
 

Table 1.  Six hypothetical case-control studies for 
the myocardial infarction example with horizontally 
partitioned data. 
 
Study Total observations Cases Controls 
   1   200   79   121 
   2 2000 701 1299 
   3   700 254   446 
   4   600 215   385 
   5 1000 382   618 
   6   100   38     62 

 
 
 An ILMA based on the pooled data from all studies 
combined was compared with a DataSHIELD-type 
analysis (11) based on the six studies separately. Both 
analyses were performed using the statistical package 
R (20). Table 2 summarises the outcome of each ana-
lysis. As can be seen, and as would be anticipated 
given the theory outlined earlier, the outcomes are not 
just similar, they are identical. Both approaches requi-
red four iterations to achieve ‘convergence’, with the 
convergence criteria for both analyses set at 
                     

ܦ| െ |ିଵܦ
ܦ  0.1

൏ 10ି଼ 

 
(the default convergence criterion of the glm() func-
tion in R (20)), where Dr = –2logLr, and Lr is the likeli-
hood at the rth iteration. 
 
Comments  
If one were to estimate the log-odds ratio for each of the 
variables (X1, X2, X3) via an SLMA of the six studies in 
section 2.1, the estimates, along with their associated 
95% confidence intervals, would be very similar to 
those from a GLM ILMA/ DataSHIELD analysis (11). 
In other words, the advantage of DataSHIELD is not 
that it provides inferences that are either more powe-
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Table 2. Estimates of the coefficients from each analysis. 
 
  ILMA using GLM DataSHIELD using GLM 
Intercept True values Estimate Std. error Estimate Std. error 
   0.5 –0.442 0.043 –0.442 0.043 
  X 1   0.1   0.098 0.005   0.098 0.005 
  X 2     0.05   0.048 0.011   0.048 0.011 
  X 3 –0.3 –0.312 0.051 –0.312 0.051 

 
 
rful or less biased than SLMA – though SLMA cannot, 
of course, be used at all for analyses that demand access 
to individual patient records. Rather, DataSHIELD 
provides a more flexible and less time consuming app-
roach to analysis, as it is not restricted to the summary 
statistics that have been made available by each study 
ahead of the analysis. In principle, new research 
questions can therefore be explored in real time, 
limited only by the particular classes of analysis that 
DataSHIELD can perform, and by the security features 
required to prevent the release of participant- 
identifying summary statistics. 
 It should be noted that the constraint imposed by the 
need to pre-define summary statistics is often of 
limited impact in certain areas of biostatistics, for 
example, in meta-analysing clinical trials, or 
undertaking a genome wide association analysis. In 
both of these settings, the range of potential analyses is 
limited and best practice would often suggest that an 
analysis plan can, and should, be specified before the 
meta-analysis starts. But this is not the case when 
analysis is aimed at investigating genes, environment 
and interactions between them. Exploratory analysis is 
then essential, and should ideally be undertaken on the 
full data set combined – a restrictive need to limit 
investigation to models that have been specified a-
priori will often be extremely inefficient from a 
scientific perspective. 
 
 
DISCLOSURE RISKS 
 
DataSHIELD is currently under development and 
piloting. In order for it to become useful as a practical 
analysis tool, it must satisfy the specific governance 
requirements of each study to which it is applied. In 
particular, it is critical that there is appropriate protec-
tion of the privacy and confidentiality of individual 
study participants. This is not a trivial challenge, and 
in any case, it is never possible to design a totally 
secure system. Security breaches could for example 
arise if the IT system underpinning DataSHIELD was 
insufficiently secure, or if the people operating it 
behaved in a cavalier manner or with deliberate mal-
intent. But despite their undoubted importance, these 
issues fall outside the remit of this particular paper. 
The first is a computer science concern and has to do 
with the general problems surrounding the set-up of 
remote access analysis servers and is discussed in 
detail elsewhere (5,7,15). The second relates to the 
ethical and legal concerns that necessarily arise from 

any collaboration involving the sharing of data. Both 
of these issues are being actively addressed under the 
DataSHIELD project, but neither will be considered 
further here. There are, however, a range of other ways 
in which supposedly secure information can inadver-
tently be transmitted which relate to the nature of the 
transmitted data themselves and to statistical inferen-
ces that can be based upon them. These issues are 
central to this paper. 
 First, individual data records may themselves be 
revealing, either directly, through identifying labels 
such as names, social security numbers, addresses 
(‘identity disclosure’ (5)) or indirectly, by releasing 
sensitive information such as rare disease status etc. 
(‘attribute disclosure’ (5)). DataSHIELD does not pro-
vide a way of by-passing the need to ensure that poten-
tially identifying items such as these are not released 
by a study. For example, in developing the suite of 
secure ‘aggregating’ functions that are used to explore 
the overall distribution of data items across individual 
studies, one of the issues that is being considered is the 
minimum cell size in any table that may acceptably be 
viewed by the AC – e.g. should all cells containing 
fewer than 5 individuals be collapsed with other local 
cells. The IT system being developed aims to enforce 
this capacity. 
 Second, certain combinations of records or summa-
ry statistics, whilst individually innocuous, can lead to 
‘inferential disclosure’ whereby the privacy of study 
participants is threatened, not by their own records, but 
by inference based on the statistical distribution over 
the whole database (5). Perhaps the simplest example 
of this is based on what is sometimes called ‘Residual 
Disclosure’. For example, one might start by reques-
ting a summary statistic based on all those participants 
in a particular study who were born on or before 12/6/ 
1959, followed by a request for the same summary 
statistic on all of those born strictly before 12/6/1959. 
The difference between these two summary statistics 
will reveal information specifically about those born 
on 12/6/1959. Crucially, the size of that group may be 
very small – possibly a single individual – and this can 
pose an obvious threat to the privacy. For example, if 
only one participant has the specified date of birth, and 
the summary statistic in question is the prevalence of 
bipolar depression, one can then precisely infer whether 
that individual does or does not suffer from a condition 
they may well prefer to keep confidential. Of course, 
additional information, not available through Data-
SHIELD, or prior knowledge – for example someone’s 
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date of birth – would be necessary to then identify this 
individual. 
 To address the specific concern of residual disclo-
sure, strict restrictions are at present placed on the po-
tential for analysing subsets of data. But, in the future, 
a more flexible approach may involve ongoing parsing 
of each new analytic request and its comparison with 
earlier commands in order to place restrictions on the 
‘query’ and ‘answer’ spaces, and implement risk and 
utility measures for each query (5). More generally, 
since DataSHIELD depends on the sharing of summa-
ry statistics to fit models, it is fundamental that we 
consider whether any violations of privacy rules are 
likely to occur, either directly from a single summary 
statistic, or via a combination of such measures. It has 
long been known that simple linear regression can be 
considered ‘secure’ (5,7,15) and this has now been 
extended to the broader class of GLMs via 
DataSHIELD (11). In this case, the summary statistics, 
either individually or in combination, that pass from 
the DC to the AC are unlikely to disclose sensitive 
information when the number of study subjects is large 
in comparison to the number of parameters in the 
GLM (11) – as is generally the case. This, however, 
may not be the case with more complex models of 
interest, and ensuring that privacy regulations are not 
violated via the exchange of summary statistics 
necessary to fit these models will require considerable 
effort. For example, fitting Generalised Linear Mixed 
Models (GLMM) (21) and Generalised Estimating 
Equations (GEE) (22) are of particular interest, as 
biobank data may be correlated. But, these pose new 
problems: for example, GLMMs typically rely on 
estimating potentially identifying subject-specific 
random effects to fit a model, and so the DataSHIELD 
algorithm would require that these be handled very 
carefully, and perhaps even retained on the DCs. One 
possibility is that DCs would send a summary statistic, 
such as the local variance of the random effects, to the 
AC rather than the individual values themselves. 
 
 
DISCUSSION 
 
DataSHIELD offers an alternative approach to the ana-
lysis of large datasets obtained by combining several 
studies but where the physical sharing of individual 
data is not possible or is not permitted (11). Crucially, 
DataSHIELD enables one to mirror an analysis based 
on pooling individual data between several studies but 
without physically sharing those data. As a pivotal 
characteristic of the proposed approach, the present 
paper demonstrates why, for a broad class of analyses 
including those that require the fitting of a GLM, this 
mirroring is mathematically perfect. Investigation into 
the required statistics for other statistical models and 
more complex analyses is currently underway. 
 For the future, a number of important methodolo-
gical challenges and potential applications are already 
evident. 

 In the context of contemporary developments in 
epidemiology, public health, and population genomics 
(23,24), a potentially important application of 
DataSHIELD is in Mendelian randomisation analysis 
(25,26). Here, the focus is on the use of a known gene-
tic variant as an instrument to circumvent the problem 
of unobserved confounding of some exposure-outcome 
association of interest and not on the aetiological role 
of the genetic variant itself (25,27). Because the 
crucial gene-exposure association is often weak, vast 
sample sizes can be required for reliable effect esti-
mates and some alleviation from the inherent problem 
of ‘weak instrument bias’ in these applications (26,28-
30). This implies that meta-analysis will often be 
invaluable, and as methods for causal inference in this 
setting sometimes demand access to individual level 
data, ILMA will often be essential and if physical 
access to the individual level data is problematic, 
DataSHIELD may provide a viable solution. 
 Fitting models, however, is just one part of a 
thorough statistical analysis, and ideally DataSHIELD 
would also provide tools for the diagnostic checking of 
fitted models. Since such checks are commonly con-
ducted using potentially identifying residuals, other 
ways of model checking must be used. Some basic 
checks for departures from the model are theoretically 
viable, however. For simple linear regression models, 
there are a number of statistics that can be derived via 
summation (15). This is more complex for a GLM, 
though it is possible to derive the diagonal elements, 
hii, of the ‘hat matrix’ H associated with any GLM via 
a DataSHIELD approach, since hii depends only on the 
covariate values of individual i and the matrix ࡵሺࢼሻ, 
calculated during the fitting of the GLM via the IRLS 
algorithm (17). This means that it is possible, for 
example, to securely calculate the ‘measure of 
leverage’ (16), defined as the trace of the hat matrix, 
via DataSHIELD. However, such measures are hardly 
sufficient for model checking. In consequence, we are 
also investigating the use of contour or density ‘maps’ 
in place of residual plots – thereby avoiding the need 
to show individual plotting points. These could be 
produced for each study, and sent to the AC without 
compromising data privacy legislation, and combined 
to create an overall residual contour plot for the model 
as a whole. Patterns in this contour plot could then be 
used for detecting a poor fit of the model to the data. A 
useful alternative may also be provided by ‘synthetic 
diagnostics’ which entails simulating residuals along 
with dependent and independent variables that mimic 
their true counterparts. These are often sufficient to 
detect gross deficiencies in a model (31). 
 Thus far, and as discussed above, the use and deve-
lopment of DataSHIELD has focussed primarily on 
horizontally partitioned data where each study has 
measured the same attributes on different participants. 
Another situation where an approach such as 
DataSHIELD could be enormously useful is that of 
vertically partitioned data. Here information on the 
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covariates on any specific individual may be held in 
different datasets (32). As an example, a particular 
cohort study may wish to undertake an analysis which 
incorporates data on individual study participants that 
can only be garnered from a remote (and potentially 
highly secure) data repository such as a Justice Depart-
ment database. In this case, one cannot even begin 
without some element of data sharing as the different 
studies need to determine which subjects they all have 
in common and how to deal with incomplete records 
(7) – that is, some way to ‘link’ individuals in the 
cohort study with their corresponding data, if any such 
exist, in the secondary database. Presuming that this 
first hurdle can effectively be overcome, some adapta-
tion of the ‘secure matrix products’ approach to linear 
regression on vertically partitioned data (7,32) by which 
off-diagonal blocks of the sample covariance can be 
computed with a limited degree of sharing is theoreti-
cally possible for other analyses. Furthermore, it is of 
course conceivable that many databases in the real 
world will be “partially overlapping, vertically 
partitioned” (32) a mixture of both horizontally and 
vertically partitioned data. This poses an even greater 
challenge, but it is discussed in more detail in Reiter et 
al (33). 
 It is, of course, possible that statistics hitherto regar-
ded as ‘safe’ may unexpectedly be demonstrated to be 
‘unsafe’. A problem of this nature recently occurred in 
the GWAS context. In that field, meta-analyses are fre-
quently performed using study-specific summary SNP-
based statistics. Aggregate results from these, such as 
allele frequencies, were routinely published – without 
restriction – on the web. In 2008, a statistical test was 
proposed by Homer et al (34) making it possible to 
determine with high power whether an individual of 
interest, or proband, participated in a given genetic 
study, using only the summary allele frequencies of 
that study together with a full genome-scan profile of 
the proband. This caused enormous concern resulting 
in the withdrawal of most aggregate data from the 
internet with access restricted to approved researchers 
only (14). The implications for the development philo-
sophy of DataSHIELD are that an apparently secure 
summary statistic used by DataSHIELD could at some 
indeterminate point in the future be demonstrated to be 
disclosing. It is therefore critical that the summary sta-
tistics needed by any new class of model are scruti-
nised carefully to ensure that their potential for disclo-

sure is properly understood. In addition, users will be 
required to notify DataSHIELD if any insecurities are 
identified in which case all possible steps will be taken 
to block those loop-holes. Perhaps most importantly, 
all project members are forewarned by the Homer et al 
example that the unexpected might just happen. 
DataSHIELD must thus be under continuous develop-
ment and be prepared to react to change. 
 DataSHIELD presents only one method of protec-
ting the confidentiality of participant data, though 
others primarily focus on ensuring secure access to one 
repository (35). These methods must all be used strate-
gically in a combined approach that ensures that bona 
fide researchers can rapidly access the data they need 
(as participants assume will be the case) whilst simul-
taneously making sure that confidential data remain 
secure and that all governance stipulations are satisfied 
in full. DataSHIELD has the potential to provide a key 
component of the armoury that is required, though it 
certainly cannot solve all problems. It is being de-
signed and developed by an international consortium 
that is truly transdisciplinary (12,36) – including bio-
informaticians, biostatisticians, epidemiologists, social 
scientists and ethico-legal experts – and the aim is to 
ensure that potential problems, challenges and oppor-
tunities are identified early and dealt with robustly. A 
number of pilot/development projects have been 
identified, are currently being set up, and are aimed at 
ensuring that DataSHIELD moves forwards both 
efficiently and effectively. 
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